In this lecture we:

- Discussed Universal Hash Functions;
- Cuckoo Hashing;
- And Cuckoo Graphs.

Reading: Rasmus Pagh’s Cuckoo Hashing for Undergraduates

1 Universal Hash Functions

Theorem 1. Let T be a table of size m. Then for key k,

$$E[n_{h(k)}] \leq \begin{cases} \alpha + 1 & k \in T \\ \alpha & \text{otherwise} \end{cases}$$

where there are n items in table T, n_i denotes the number of items in bucket i, and $\alpha = \frac{n}{m}$ is the load factor.

Proof. Let Y_k be the number of keys that are not k which hash to the same slot as k. Then

$$Y_k = \sum_{l \neq k, \ l \in T} X_{kl}$$

where

$$X_{kl} = \begin{cases} 1 & h(k) = h(l) \\ 0 & \text{otherwise} \end{cases}$$

Then

$$E[Y_k] = E\left[\sum_{l \neq k, \ l \in T} X_{kl} \right] = \sum_{l \neq k, \ l \in T} E[X_{kl}] = \sum_{l \neq k, \ l \in T} \frac{1}{m}$$

If $k \notin T$, then $n_{h(k)} = Y_k$ and

$$|\{l \in T | l \neq k\}| = n \implies E[Y_k] = \frac{n}{m}$$

If $k \in T$, then $n_{h(k)} = Y_k + 1$ and

$$|\{l \in T | l \neq k\}| = n - 1 \implies E[Y_k] = \frac{n-1}{m}$$
Example: Of a universal set of hash functions

\[h_{a,b}(k) = ((ak + b) \mod p) \mod m \]

where \(p \) is a prime bigger than any fixed key. Choose \(a \in \{1, 2, \ldots, p - 1\} \) and \(b \in \{0, 1, \ldots, p - 1\} \) to select a hash function from the set.

2 Cuckoo Hashing

- Find operation takes \(O(1) \)
- Delete operation takes \(O(1) \)
- Insert operation takes \(O(1) \) amortized

We use two hash functions \(h_1 \) and \(h_2 \). A key \(k \) will either be stored in \(h_1(k) \) or in \(h_2(k) \). Each slot in table contains just one key. Below is pseudocode for the insert operation:

```plaintext
insert(k)
pos = h_1(k)
repeat n times {
    b = T[pos]
    T[pos] = k
    if b == NULL return
    if pos = h_1(b) then
        pos = h_2(b)
    else pos = h_1(b)
    k = b
}
rehash();
insert(k);
```

3 Cuckoo Graphs

Definition 2. (Cuckoo Graph)

A **cuckoo graph** for \(n \) items is a graph \(G = (V, E) \) where

\[V = \{0, 1, \ldots, m - 1\} \]
\[E = \{(h_1(k), h_2(k)) \mid k \in T\} \]

We assume that \(h_1(k) \) and \(h_2(k) \) are uniform and independent random edges.

Note: An insertion will succeed if there is no cycle in the cuckoo graph.
First we consider paths,

Lemma 3. For some constant \(c > 1 \) and \(m \geq 2cn \), then

\[
\Pr\left[\text{cuckoo graph has path of length } l \text{ from } i \text{ to } j \right] \leq \frac{1}{mc^l}
\]

Proof. We proceed by induction on \(l \).

Base Case: Let \(l = 1 \). Then edge \((i,j)\) exists with probability \(\leq n \cdot \frac{1}{m^2} = n \cdot \frac{2}{2cn} = \frac{1}{c^2m} \).

For \(l > 1 \), the shortest path from \(i \) to \(j \) has length \(l \) if and only if there exist \(p \) and

1. there exists a shortest path from \(i \) to \(p \) of length \(l - 1 \).

 note: occurs with probability \(\leq \frac{1}{mc^{l-1}} \) by induction

2. there exists the edge \((p,j)\)

 note: occurs with probability \(\leq \frac{1}{mc} \)

Together we obtain

\[
\text{probability} \leq \frac{1}{m^2 \cdot c^l}
\]

By summing over possible nodes \(p \) we get

\[
\text{probability} \leq \frac{m \cdot 1}{m^2 \cdot c^l} = \frac{1}{mc^l}
\]

Probability that \(k \) and \(k' \) hash to the same path ("bucket") of cuckoo graph is probability of a path from \(h_1(k) \) or \(h_2(k) \) to \(h_1(k') \) or \(h_2(k') \) which is

\[
\leq 4 \cdot \sum_{l=1}^{\infty} \frac{1}{mc^l} = \frac{4}{m} \cdot \frac{1}{c - 1} = O\left(\frac{1}{m}\right)
\]

\(\square \)
Rehash: means choose new hash function and rehash all keys. Probability that a rehash occurs is

\[\leq Pr \left[\text{hashing creates cuckoo graph with a cycle} \right] \]

\[\leq \sum_{i=1}^{m} Pr \left[\text{cycle involving } i \right] \]

\[\leq \sum_{i=1}^{m} \sum_{l=1}^{\infty} \frac{1}{mc^l} \]

\[\leq \frac{1}{2} \text{ for } c \geq 3 \]

where a cycle is a path from \(i \) to \(i \). Then the expected number of rehashes is less than or equal to 2.