```
CS420+500: Advanced Algorithm Design and Analysis
Lectures: April 3rd and April 5th, 2017
Prof. Will Evans

In this lecture we:
- Discussed Universal Hash Functions;
- Cuckoo Hashing;
- And Cuckoo Graphs.

Reading: Rasmus Pagh's Cuckoo Hashing for Undergraduates

\section*{1 Universal Hash Functions}

Theorem 1. Let \(T\) be a table of size \(m\). Then for key \(k\),
\[
E\left[n_{h(k)}\right] \leq \begin{cases}\alpha+1 & k \in T \\ \alpha & \text { otherwise }\end{cases}
\]
where there are \(n\) items in table \(T, n_{i}\) denotes the number of items in bucket \(i\), and \(\alpha=\frac{n}{m}\) is the load factor.

Proof. Let \(Y_{k}\) be the number of keys that are not \(k\) which hash to the same slot as \(k\). Then
\[
Y_{k}=\sum_{l \neq k, l \in T} X_{k l}
\]
where
\[
X_{k l}= \begin{cases}1 & h(k)=h(l) \\ 0 & \text { otherwise }\end{cases}
\]

Then
\[
E\left[Y_{k}\right]=E\left[\sum_{l \neq k, l \in T} X_{k l}\right]=\sum_{l \neq k, l \in T} E\left[X_{k l}\right]=\sum_{l \neq k, l \in T} \frac{1}{m}
\]

If \(k \notin T\), then \(n_{h(k)}=Y_{k}\) and
\[
|\{l \in T \mid l \neq k\}|=n \Longrightarrow E\left[Y_{k}\right]=\frac{n}{m}
\]

If \(k \in T\), then \(n_{h(k)}=Y_{k}+1\) and
\[
|\{l \in T \mid l \neq k\}|=n-1 \Longrightarrow E\left[Y_{k}\right]=\frac{n-1}{m}
\]

Example: Of a universal set of hash functions
\[
h_{a, b}(k)=((a k+b) \bmod p) \bmod m
\]
where \(p\) is a prime bigger than any fixed key. Choose \(a \in\{1,2, \ldots, p-1\}\) and \(b \in\{0,1, \ldots, p-1\}\) to select a hash function from the set.

\section*{2 Cuckoo Hashing}
- Find operation takes \(O(1)\)
- Delete operation takes \(O(1)\)
- Insert operation takes \(O(1)\) amortized

We use two hash functions \(h_{1}\) and \(h_{2}\). A key \(k\) will either be stored in \(h_{1}(k)\) or in \(h_{2}(k)\). Each slot in table contains just one key. Below is psuedocode for the insert operation:
```

insert(k)
pos = h_1(k)
repeat n times {
b = T[pos]
T[pos] = k
if b == NULL return
if pos = h_1(b) then
pos = h_2(b)
else pos = h_1(b)
k = b
}
rehash();
insert(k);

```

\section*{3 Cuckoo Graphs}

Definition 2. (Cuckoo Graph)
A cuckoo graph for \(n\) items is a graph \(G=(V, E)\) where
\[
\begin{aligned}
& V=\{0,1, \ldots, m-1\} \\
& E=\left\{\left(h_{1}(k), h_{2}(k)\right) \mid k \in T\right\}
\end{aligned}
\]

We assume that \(h_{1}(k)\) and \(h_{2}(k)\) are uniform and independent random edges.

Note: An insertion will succeed if there is no cycle in the cuckoo graph.


Figure 1: Cuckoo Graph

First we conside paths,
Lemma 3. For some constant \(c>1\) and \(m \geq 2 c n\), then
\[
\operatorname{Pr}[\text { cuckoo graph has path of length } l \text { from } i \text { to } j] \leq \frac{1}{m c^{l}}
\]

Proof. We proceed by induction on \(l\).
Base Case: Let \(l=1\). Then edge \((i, j)\) exists with probability \(\leq n \cdot \frac{1}{m^{2}}=n \cdot \frac{2}{2 c n \cdot m}=\frac{1}{c^{1} \cdot m}\). For \(l>1\), the shortest path from \(i\) to \(j\) has length \(l\) if and only if there exists \(p\) and
1. there exists a shortest path from \(i\) to \(p\) of length \(l-1\).
note: occurs with probability \(\leq \frac{1}{m \cdot c^{l-1}}\) by induction
2. there exists the edge \((p, j)\)
note: occurs with probability \(\leq \frac{1}{m \cdot c}\)
Together we obtains
\[
\text { probability } \leq \frac{1}{m^{2} \cdot c^{l}}
\]

By summing over possible nodes \(p\) we get
\[
\text { probability } \leq \frac{m \cdot 1}{m^{2} \cdot c^{l}}=\frac{1}{m \cdot c^{l}}
\]

Probability that \(k\) and \(k^{\prime}\) hash to the same path ("bucket") of cuckoo graph is probability of a path from \(h_{1}(k)\) or \(h_{2}(k)\) to \(h_{1}\left(k^{\prime}\right)\) or \(h_{2}\left(k^{\prime}\right)\) which is
\[
\leq 4 \cdot \sum_{l=1}^{\infty} \frac{1}{m c^{l}}=\frac{4}{m} \cdot \frac{1}{c-1}=O\left(\frac{1}{m}\right)
\]

Rehash: means choose new hash function and rehash all keys. Probability that a rehash occurs is
\[
\begin{aligned}
& \leq \operatorname{Pr}[\text { hashing creates cuckoo graph with a cycle }] \\
& \leq \sum_{i=1}^{m} \operatorname{Pr}[\underline{\text { cycle }} \text { involving } i] \\
& \leq \sum_{i=1}^{m} \sum_{l=1}^{\infty} \frac{1}{m c^{l}} \\
& \leq \frac{1}{2} \text { for } c \geq 3
\end{aligned}
\]
where a cycle is a pth from \(i\) to \(i\). Then the expected number of rehashes is less than or equal to 2 .```

