CS420+500: Advanced Algorithm Design and Analysis

Lectures: April 3rd and April 5th, 2017

Prof. Will Evans Scribe: Alexander Julian Martinez

In this lecture we:

- Discussed Universal Hash Functions;
- Cuckoo Hashing;
- And Cuckoo Graphs.

Reading: Rasmus Pagh's Cuckoo Hashing for Undergraduates

1 Universal Hash Functions

Theorem 1. Let T be a table of size m. Then for key k,

$$E[n_{h(k)}] \le \begin{cases} \alpha + 1 & k \in T\\ \alpha & otherwise \end{cases}$$

where there are n items in table T, n_i denotes the number of items in bucket i, and $\alpha = \frac{n}{m}$ is the load factor.

Proof. Let Y_k be the number of keys that are not k which hash to the same slot as k. Then

$$Y_k = \sum_{l \neq k, \ l \in T} X_{kl}$$

where

$$X_{kl} = \begin{cases} 1 & h(k) = h(l) \\ 0 & otherwise \end{cases}$$

Then

$$E[Y_k] = E\left[\sum_{l \neq k, \ l \in T} X_{kl}\right] = \sum_{l \neq k, \ l \in T} E[X_{kl}] = \sum_{l \neq k, \ l \in T} \frac{1}{m}$$

If $k \notin T$, then $n_{h(k)} = Y_k$ and

$$|\{l \in T \mid l \neq k\}| = n \implies E[Y_k] = \frac{n}{m}$$

If $k \in T$, then $n_{h(k)} = Y_k + 1$ and

$$\left|\{l \in T \mid l \neq k\}\right| = n - 1 \implies E[Y_k] = \frac{n - 1}{m}$$

Example: Of a universal set of hash functions

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m$$

where p is a prime bigger than any fixed key. Choose $a \in \{1, 2, ..., p-1\}$ and $b \in \{0, 1, ..., p-1\}$ to select a hash function from the set.

2 Cuckoo Hashing

- Find operation takes O(1)
- Delete operation takes O(1)
- Insert operation takes O(1) amortized

We use two hash functions h_1 and h_2 . A key k will either be stored in $h_1(k)$ or in $h_2(k)$. Each slot in table contains just one key. Below is psuedocode for the insert operation:

```
insert(k)
pos = h_1(k)
repeat n times {
        b = T[pos]
        T[pos] = k
        if b == NULL return
        if pos = h_1(b) then
            pos = h_2(b)
        else pos = h_1(b)
        k = b
}
rehash();
insert(k);
```

3 Cuckoo Graphs

Definition 2. (Cuckoo Graph) A **cuckoo graph** for n items is a graph G = (V, E) where

$$V = \{0, 1, \dots, m-1\}$$

 $E = \{(h_1(k), h_2(k)) \mid k \in T\}$

We assume that $h_1(k)$ and $h_2(k)$ are uniform and independent random edges.

Note: An insertion will succeed if there is no cycle in the cuckoo graph.

Figure 1: Cuckoo Graph

First we conside paths,

Lemma 3. For some constant c > 1 and $m \ge 2cn$, then

$$Pr\left[cuckoo \text{ graph has path of length } l \text{ from } i \text{ to } j\right] \leq \frac{1}{mc^l}$$

Proof. We proceed by induction on l.

<u>Base Case:</u> Let l = 1. Then edge (i, j) exists with probability $\leq n \cdot \frac{1}{m^2} = n \cdot \frac{2}{2cn \cdot m} = \frac{1}{c^1 \cdot m}$. For l > 1, the shortest path from i to j has length l if and only if there exists p and

- 1. there exists a shortest path from *i* to *p* of length l-1. <u>note</u>: occurs with probability $\leq \frac{1}{m \cdot c^{l-1}}$ by induction
- 2. there exists the edge (p, j)<u>note</u>: occurs with probability $\leq \frac{1}{m \cdot c}$

Together we obtains

$$probability \leq \frac{1}{m^2 \cdot c^2}$$

By summing over possible nodes p we get

$$probability \leq \frac{m \cdot 1}{m^2 \cdot c^l} = \frac{1}{m \cdot c^l}$$

Probability that k and k' hash to the same path ("bucket") of cuckoo graph is probability of a path from $h_1(k)$ or $h_2(k)$ to $h_1(k')$ or $h_2(k')$ which is

$$\leq 4 \cdot \sum_{l=1}^{\infty} \frac{1}{mc^l} = \frac{4}{m} \cdot \frac{1}{c-1} = O\left(\frac{1}{m}\right)$$

<u>Rehash:</u> means choose new hash function and rehash all keys. Probability that a rehash occurs is

$$\leq \Pr\left[\text{hashing creates cuckoo graph with a cycle}\right]$$
$$\leq \sum_{i=1}^{m} \Pr\left[\underline{\text{cycle involving } i}\right]$$
$$\leq \sum_{i=1}^{m} \sum_{l=1}^{\infty} \frac{1}{mc^{l}}$$
$$\leq \frac{1}{2} \text{ for } c \geq 3$$

where a cycle is a pth from i to i. Then the expected number of rehashes is less than or equal to 2.