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Definitions in the randomized marking mouse (RMM) algorithm: 

Locations where the mouse can hide ≡ different pages 1, 2, 3, … , m 
Locations where mouse isn’t are pages in cache  
Cat probe sequence ≡ page request sequence 

 
Deterministic Mouse can achieve no better than (m – 1)-competitive  
 
Random Marking Mouse (RMM) algorithm: 

1. Start at a random location (cache entry) 
2. When Cat probes a location, mark it 
3. When Cat probes mouse’s location, move to a random unmarked spot 
4. If mouse is at last unmarked spot, clears marks (a new phase begins) 

 
 
 
claim 1  𝐸 𝑅𝑀𝑀$%&' 𝑝)𝑝* …𝑝, ≤ 𝑂 𝑙𝑜𝑔𝑚 𝑂𝑃𝑇(𝑝)𝑝* …𝑝,) 

 
Note  “E” denotes “expected value”, over possible values of mouse’s choices. See  

note in next lecture for explanation 
 
Aside  It is surprising that randomness gives us a probable gap in performance from 

deterministic algorithms. This seems to be a feature of online algorithms 
 
 
proof 

Initially, the probability that mouse is at any spot is )
7

 

=>  the first Cat probe finds mouse with probability )
7

 
 

Whether mouse is found or not in the first probe, the mouse is now at each of the m-1 
unmarked spots with probability )

78)
	, as the Cat now knows it is not in this initially 

probed spot. 
 
 
 
 



 
Note: that considering an intelligent cat that does not re-probe is equivalent to  

considering a cat that does re-probe, as any re-probes of a known empty spot will 
not contribute to the cost of RMM or OPT. Then we consider an intelligent cat 
here to simplify our argument. 

 
 
Then given that we have a smart cat that does not pick the same spot twice before the 
mouse moves, we get a similar increase in probability with each successive probe before 
the mouse is found: 

 
 
   probability for probe #2: 
  Cat finds mouse with probability )

78)
 

 probability for probe #3: 
  Cat finds mouse with probability )

78*
 

 probability for probe #4 
  Cat finds mouse with probability )

78:
 

 
 etc. 
 
 
 

To deal with these probabilities, we introduce indicator random variables, defined as 
follows: 
 

 

 Let 𝑋<
0	𝑖𝑓	𝑚𝑜𝑢𝑠𝑒	𝑖𝑠	𝑛𝑜𝑡	𝑓𝑜𝑢𝑛𝑑	𝑜𝑛	𝑝𝑟𝑜𝑏𝑒	𝑖
1				𝑖𝑓	𝑚𝑜𝑢𝑠𝑒	𝑖𝑠	𝑓𝑜𝑢𝑛𝑑	𝑜𝑛	𝑝𝑟𝑜𝑏𝑒	𝑖					 

 
 

Then we describe the number of times the mouse is found in a phase using an 
expectation: 
note: the concept of expectation is described later 

 
 
      𝐸 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑅𝑀𝑀	𝑖𝑠	𝑓𝑜𝑢𝑛𝑑	𝑑𝑢𝑟𝑖𝑛𝑔	𝑝ℎ𝑎𝑠𝑒  

=  𝐸 𝑋<<L)  
=  𝐸[𝑋<]<L)  
= 	 )

7
+ )

78)
+ )

78*
+ ⋯+ )

)
 

= 	𝐻7 	≈ 	 ln𝑚 
 
Where Hm is the sum of the first m terms of the harmonic series. Its approximate equality 
with ln(m) is a characteristic of the series. 
 



 
 
Aside on Linearity of expectation: 

Linearity of expectation means that for some random variables X and Y, and constant a, we  
have 

1) E[X + a] = E[X] + a 
2) E[a*X] = a*E[X] 
3) E[X+Y] = E[X] + E[Y] 

The first two are fairly intuitive. Let us consider the third. 
For example, consider a game in which we flip a coin n times. Each time we flip heads, the 
payoff is $1 (and $0 for tails). Take Xi to be a random variable representing our ith flip, with 
a tails represented by Xi = 0 and a heads represented by Xi =1 
Given a fair coin:  

Prob[Xi =1] = Prob[Xi =0] = ½  
Then it is simple to see that the expected payoff on a flip is given by  

E[Xi] = 1*Prob[Xi = 1] + 0*Prob[Xi = 0] = 1*1/2 + 0*1/2 = ½,  or  50 cents  
Further, if we consider the payoff for 2 rounds, call them Xi and Xi+1 is given by  

E[Xi + Xi+1] = E[Xi] + E[Xi+1] = $1 
It is fairly simple to see that linearity of expectation should apply here, as the 2 rounds are 
independent and do not affect each other, and so considering the addition of their 
expectations should not be different than considering the expectation of their additions. It is 
perhaps more surprising to note that this remains true in the case where the values are not 
independent (for addition) 

 
 
 

Given that the cat probes all cache entries in each phase, we also have that the number of 
times OPT is found during a phase is at least one: 

 
# times OPT is found during a phase ≥ 1  
 
 
 
Then we have 𝐸 𝑅𝑀𝑀$%&' 𝑝)𝑝* …𝑝, ≤ 𝑂 𝑙𝑜𝑔𝑚 𝑂𝑃𝑇 𝑝)𝑝* …𝑝,  and claim 1 is true. 

 
  



2017/03/31 
 
 
claim 2   

For all mice A (deterministic or randomized) 
 ∃𝑝), 𝑝*, … , 𝑝,					𝑠. 𝑡.				𝐸 𝐴$%&' 𝑝)𝑝* …𝑝, 		≥ 		log𝑚𝑂𝑃𝑇(𝑝)𝑝* …𝑝,) 
 
proof  

idea: show that a cat exists that will cause A to move > logm times more than OPT 
 
 If the Cat probes at random, then no matter what mouse A does, the Cat finds it with  

probability )
7
	.  

Then the expected number of times A must move over a sequence of t probes is  '
7

 
 
idea: optimal mouse will hide in the last spot that is probed 
 
How many random cat probes does it take until the Cat examines all m spots? this is 
called the coupon collector problem, and an analysis of this problem gives expected 
number of tries as 𝑚 ln𝑚 
 
So opt moves once every 𝑚 ln𝑚 probes while A moves '

7
 = 7 \]7

7
  times in this period 

 This gives:   𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑎𝑢𝑙𝑡𝑠	𝑓𝑜𝑟	𝐴 ≥ ln𝑚 ∗ 𝑂𝑃𝑇 
 
 Then we have that claim 2 holds. 
 
 

 
  



Hash Functions 
Universal Hash Functions  
 A set of hash functions ℋ that map 𝒰 → {0,1,…,m-1} is universal if, ∀ distinct keys  

k,l in 𝒰 the number of hash functions 𝒽 ∈ ℋ  s.t.  𝒽(k) = 𝒽(l) is at most |ℋ|
7

 
 
Chaining using universal hash functions 
 Hash n keys into a table T of size m using hash function 𝒽 ∈d ℋ   
 Where ∈d signifies uniform random selection 
 

Theorem  
For key k 
Let ni = the number of items in bucket i 
𝛼 = ,

7
= load factor 

 

 𝐸 𝑛𝓀 h ≤ 𝛼 + 1	𝑖𝑓	𝑘𝑒𝑦	𝑘	 ∈ 𝑇
				𝛼					𝑖𝑓	𝑘𝑒𝑦	𝑘	 ∈ 𝑇	 

 Aside: 𝐸 𝑋 = 	 𝑃𝑟𝑜𝑏 𝑋 = 𝑦 ∗ 𝑦	k  
  Where y is every possibly number in the universe 
  Most y’s will have a probability of 0.  

For example, consider rolling a 6-sided die. Then Prob(X = y) is 1/6 if y is one of 
1,2,3,4,5,6 and 0 otherwise. 

 
 

 Let 𝑋hl
1				𝑖𝑓	ℎ 𝑘 = ℎ(𝑙)
0								𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒						

  
 
 
Continued in next lecture 

 


