CS420+4-500: Advanced Algorithm Design and Analysis

Lectures: March 29 + 31, 2017
Prof. Will Evans Scribe: Matthew Hounslow

In this lecture we:

e Discussed Randomized Online Algorithms;
e Random Marking Mouse (RMM);

e Hash Functions

Note: Friday next week there will be a final review session from 1.30 - 3.00.

1 Randomized Online Algorithms

We talked a little about this in the previous lecture, but continued on with our Random Marking
Mouse. This is described below.

1.1 Random Marking Mouse (RMM)

Locations the mouse can hide are equivalent to different pages (1,2, ..., m different pages), locations
where mouse isn’t are pages in the cache. A cat probe sequence is the equivalent of a page request
sequence. Deterministic mouse can achieve no better than (m — 1)-competitive.

The Random Marking Mouse (RMM) performs the following algorithm:

1. Start at a random location

2. When cat probes spot/location the mouse then marks it

3. When cat probes the mouse’s location, mouse moves to a random unmarked spot.
4. If mouse as at the last unmarked spot it clears the marks [a new phase begins]

Claim 1. E[RMM_ost(p1p2-.-pn)] < O(logm)- OPT(pipa...pn)

Proof. Initially the probability that mouse is at any location is % The first cat probe therefore
finds the mouse with probability % Whether the first probe finds the mouse or not, the mouse is
now at any of the m — 1 unprobed locations with equal probability. This means that our second
cat probe has a ﬁ probability of finding the mouse. This continues to the third probe (ﬁ)

and so forth.

We can define the expected number of times RMM is found during a phase using indicator
variables. An indicator variable is defined as follows:

{O if mouse is not found on probe i
,L' pr—

1 if mouse is found on probe

Enumber of times RMM is found during phase] = E[>""", X;] This ends up giving us a harmonic

series:
m

1 1 1 1
FE X;| = — e == ~ 1
[; 1] m—l—m—ldl—m—2+ +1 m nm

Since every spot is probed by the end of this sequence of probes (called a phase), the optimal mouse
OPT must move at least once. Hence the number of times OPT is found during phase > 1.

O]

Claim 2. For all mice A (deterministic or randomized) there exists a sequence pipa...pn such that

E[Acost(p1p2...pn)] > (logm) - OPT (p1p2...pn)
Proof idea: Show that a cat exists that will cause A to move > log m times more than O PT.

Proof. If cat probes at random then no matter what A does, cat finds it with probability % The

expected number of times A must move over sequence of ¢ probes is %

So how many random cat probes until cat examines all m locations? This is related to the coupon

collector problem = .

So OPT moves once every mlInm probes, while A moves % times. Therefore A faults >
(Inm) - OPT O

2 Hash Functions

2.1 Universal Hash Functions

Universal Hash Functions : A set of hash functions H, such that each maps keys to indices. It
is universal if for all distinct keys k,l € U (where U is the set of keys), the number of hash
functions h € H such that h(k) = h(l) is at most 5]

— where m, is the size of the hash table.
Fixed hash functions are usually a very bad idea, why? Because smart people will find a sequence
of keys that will cause your hash function to break!

It should be noted however that this is possibly not true for hash functions that use a cryptograph-
ically secure hash function, meaning a function h for which it is believed to be computationally
expensive, given h(k) to find k (or any value [such that h(l) = h(k)). Unfortunately, these func-
tions can be slow to compute, meaning calculating h(k) given k is slower than for typical hash
functions. A better idea is to choose a hash function at random from a set of good hash functions
(such as a universal set of hash functions).

2.2 Chaining using universal hash functions

Hash n keys into a table T' of size m, where we consider a load factor a = ;. The load factor is
the average number of items that hash to the same location.

Using a randomly chosen h €r H. In this case € means chosen at random uniformly. Let n; be
the number of items in bucket .

a+1ifkeykeT

Theorem 3. For any key k, En <
0 Yy rey [h(k)]—{aifk¢T

