
CS420+500: Advanced Algorithm Design and Analysis

Lectures: Mar. 22 + Mar. 24, 2017

Prof. Will Evans Scribe: Vincent Hui

Announcements (posted on webpage):

• The final review will be on Friday, Apr. 7th in DMP 110, hopefully.

• Please complete teaching evaluations.

As a first aside, we note the Euclidean TSP problem, with edge weights obeying the triangle
inequality, is in fact NP-Hard. This was not explicitly stated last time. The result was first shown
by Papadimitriou.

In this lecture, we:

• discussed hardness of approximation, and (in particular) hardness of approximation of the
Travelling Salesman Problem

• defined online algorithms

• introduced competitive analysis as a technique for comparing runtime of online algorithms

1 Hardness of Approximation

We motivate our discussion by considering the generalization of Travelling Salesman problem. We
will see that while Euclidean TSP was NP-hard but easy to approximate, the general problem is
NP-hard to even approximate. We will use the NP-hardness of the Hamiltonian Cycle problem to
show that obtaining a c-approximation of the general TSP problem is NP-hard.

Note that hardness of approximation typically implies the original problem belongs in an even
harder complexity class, assuming the complexity hierarchy is true.

Definition 1 (Hamiltonian Cycle). Given unweighted graph G, does G contain a cycle that visits
every vertex once?

Claim 2 (NP-hardness of appproximating TSP). If P 6= NP , then there is no polynomial time
c-approximation algorithm for TSP.

Remark. To show this general result, observe we will need show that any c-approximation algo-
rithm, of which we know NOTHING about, is NP-hard.

The natural idea will be to reduce the Hamiltonian-cycle (NP-hard) problem to the approximation.
Note our task is trivial if the target problem was an exact TSP solver. Since it is not, we seek to
transform input graph G in such a way to make it ”horrible” if and only if there is no H-cycle - so
that we can detect from even the approximation whether an H-cycle exists in the original graph.
Consider a scheme to modify G so that using any added edge e ∈ E(G′) in the Hamiltonian cycle
would blow up the cost of such cycle. (can you do this?)

1

Proof. Suppose A is a polynomial time c-approximation algorithm for TSP. We use A to solve
Hamiltonian Cycle.

Transform X: Create G′ from G = (V,E), |V | = n. G′ has all edges, and is the complete graph.

w(u, v) =

{
1 if (u, v) ∈ G

c|V |+ 1 if (u, v) /∈ G

Transform Y (answer of TSPA(G′)):

Return:

{
Yes if |TSPA(G′)| ≤ c|V |
No otherwise

• Why does this work? Edges not in the original graph are so costly that there is a gap
between cost of tour if G contains a Hamiltonian cycle (cost = n) and cost of tour if G doesn’t
(cost > c|V |).

Last, if we assumed the approximating algorithm does nothing when Hamiltonian cycle does not
exist, there is no need to transform the graph. However, this is being unnecessarily restrictive on
target problem.

2 Online Algorithms

We will see our next topic, online algorithms, is closely related to approximation algorithms. Online
algorithms respond to a sequence of requests, and we would like to know how they perform, even
if the sequence could be infinitely long. Examples include a data structure, or operating system.

Definition 3 (Online Algorithms). For input sequence p1, p2, . . . pn, an online algorithm must
produce an output, given p1, p2, . . . pi (without seeing pi+1 . . . pn) for each i.

2

Example 4 (Page replacement in cache).

p1, p2, . . . pn is a sequence of page requests, made by a program

k is cache size (# pages)

At ith page request pi, the cache contains some k pages. If pi is not in cache (page fault occurs;
some page MUST be evicted from cache to make room for pi, then pi is added to cache.

The cost of a page replacement algorithm A on a sequence p1, p2, . . . pn is:

fA(p1, p2 . . . pn) = # faults on p1, p2 . . . pn

Online algorithms must decide what page to evict without knowing the future requests. Some
reasonable page replacement policies include:

Least Recently Used(LRU): Evict page whose most recent request occured furthest in the past.

Least Frequently Used(LFU): Evict page that has been requested least often.

Marking Algorithm: Randomly evicts unmarked pages. Consider this an approximation to LRU
by using a ”mark” bit to replace timestamp. This is currently in use in Linux.

First In First Out(FIFO): Evict page that has been in cache longest.

Farthest in the Future(Optimal): This is impossible, but if entire sequence of requests is known
offline, evicting page used farthest in future is optimal - result was proven by Bellady.

• How do we decide on a best online algorithm?

1. Worst-case performance

max
p1,p2...pn

fLRU (p1, p2 . . . pn) = n

fLFU (p1, p2 . . . pn) = n

fFIFO(p1, p2 . . . pn) = n

where n = total # of pages possibly requested.

2. Average case performance

Expected # of page faults on sequence of randomly, uniformly, independently chosen
pages:

E[fLRU (p1, p2 . . . pn)] = E[fLFU (p1, p2 . . . pn)] = E[fFIFO(p1, p2 . . . pn)] = (1− k

m
)n

In all cases, the expectation is the sum of expectation for each request, which has prob-
ability density uniformly distributed over all pages. In particular,

P (not in cache) = 1− k

m

3

Clearly, neither technique yields interesting results, so we need to try something beyond conven-
tional analysis techniques. A possible direction would be to empirically find a more accurate
probability distribution of future page requests, and this is in fact the subject of much research -
(beyond the scope of our course).

We will instead compare online algorithms to the optimal offline algorithm. In doing so, we will
be reminded of the relative method of analysing approximation algorithms. In both cases, we com-
pare the non-optimal solution of a resource-constrained algorithm against an ”infinite-resource”
algorithm’s optimal solution. Running time constraints force non-optimality in approximation al-
gorithms, while non-optimality is now due to online nature of problem/not knowing future.

3 Competitive Analysis

How does an algorithm’s performance compare to the optimal offline algorithm?

Definition 5 (c-competitiveness). An online algorithm A is c-competitive if:
There exists b, s.t. for all p1, p2 . . . pn:

fA(p1, p2 . . . pn) ≤ cfOPT (p1, p2 . . . pn) + b

Theorem 6. LRU and FIFO are k-competitive.

Theorem 7. If A is a deterministic online algorithm for paging, then c ≥ k.

Remark. Randomization does better than k-competitive.

4

