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Euclidean	TSP	is	NP-Hard	[Papadimitriou	 '77]
Hamiltonian	Cycle:	Given	unweighted	graph	G,	does	G	contain	a	cycle	that	visits	
every	vertex	once?	
Hamiltonian	Cycle	is	NP-hard.

Hardness	of	Approximation
The	general	TSP	is	NP-Hard	to	approximate.

Claim:	If	P≠ NP	then	there	is	no	polytime	c-approximation	algorithm	for	TSP.
Proof:	Suppose	A	is	a	polytime	c-approximation	algorithm	for	TSP.

Transform	X:	
Create	G'	from	G	=	(V,E),	|V|=n
G'	has	all	edges

𝒘(𝒖,𝒗) = $ 	𝟏 																			𝒊𝒇 	(𝒖 ,𝒗 ) ∈ 𝑮
𝒄|𝑽|+ 𝟏 							𝒊𝒇 	(𝒖 ,𝒗 ) 	∉ 𝑮

Transform	Y:	If		|𝑻𝑺𝑷𝑨(𝑮’)| ≤ 	𝒄|𝑽| then	 output	 yes,	otherwise	 no.

Why	does	this	work?
Edges	not	in	the	original	graph	are	so	costly	that	there's	a	gap	between	cost	
of	tour	if	G	contains	a	Hamiltonian	cycle	(cost=n)	and	cost	of	tour	if	G	doesn't	
(cost	>	c|V|)

March	24	Friday

Online	Algorithm
For	input	sequence	P1P2…Pn	in	which	n	is	very	large,	an	online	algorithm	must	
produce	an	output	given	a	partial	input	P1P2…Pi	(without	seeing	Pi+1…Pn)	for	each	
i.

Example:	Page	replacement	in	cache
P1P2….Pn	is	a	sequence	of	page	requests	made	by	a	program.
K	is	the	size	of	cache.
At	ith page	request,	Pi,	the	cache	contains	some		k	pages.
If	Pi	is	not	in	the	cache	(page	fault)	,	some	page	must	be	evicted	from	cache	to	
make	room	for	Pi,	then	Pi	is	added	to	cache.

The	cost	of	a	page	replacement	algorithm	A	on	a	sequence	P1P2…Pn	is	
𝑓𝐴(𝑃1𝑃2…𝑃𝑛) =	#𝑓𝑎𝑢𝑙𝑡𝑠	𝑜𝑛	𝑃1𝑃2… .𝑃𝑛

Online	algorithm	must	decide	what	page	to	evict	without	knowing	the	future	
request.

Example	Page	replacement	algorithm:
Least	Recently	Used	(LRU)	:	Evict	page	whose	most	recent	request	occurred	
furthest	in	the	past.
Least	Frequently	Used	(LFU)	:	Evict	page	that	has	been	requested	least	often.
Marking	Algorithm:	poor	man's	LRU	(with	randomization)
FIFO:	Evict	page	that	has	been	in	cache	longest.

How	do	we	decide	the	best	online	algorithm?
Worst-case	performance1.

𝐦𝐚𝐱
𝑷𝟏𝑷𝟐…𝑷𝒏

⬚ K
𝒇𝑳𝑹𝑼	(𝑷𝟏𝑷𝟐…𝑷𝒏) = 𝒏
𝒇𝑳𝑭𝑼	(𝑷𝟏𝑷𝟐…𝑷𝒏) = 𝒏
𝒇𝑭𝑰𝑭𝑶(𝑷𝟏𝑷𝟐…𝑷𝒏) = 𝒏

Average-case	performance:				2.
(m=total	#	of	pages	possibly	requested)
Expected	#	page	fault	on	sequence	of	randomly,	uniformly,	independently	
chosen	pages:
E[fLRU	(P1P2…PN)]	=	(1	- k/m)*n
E[fLFU	(P1P2…PN)]	=	(1	- k/m)*n
E[fFIFO	(P1P2…PN)]	=	(1	- k/m)*n

Competitive	Analysis3.
How	does	online	algorithm's	performance	compare	to	best	offline	algorithm?

An	online	algorithm	A	is	c-competitive	if	
there	exists	b	such	as	
for	all	P1P2…Pn
fA	(P1P2…Pn)	≤c	*	fOPT	(P1P2…Pn)	+	b

Thm:	LRU	&	FIFO	are	k-competitive	in	which	k	=	cache	size.
Thm:	If	A	is	a	deterministic	online	algorithm	for	paging,	then	c≥k.
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