CS420+4-500: Advanced Algorithm Design and Analysis

Lectures: March 22 + March 24, 2017
Prof. Will Evans Scribe: Sean Copeland

Euclidean TSP is NP-hard [Papadimitriou ’77]
Hamiltonian Cycle: Given an unweighted graph G
Does G contain a cycle that visits every vertex once?
Hardness of Approximation
The general TSP is NP-hard to approximate
Claim:
If P #£ NP

then there is no polynomial time c-approximation algorithm for TSP.

G G'

h 4
h 4
>

A

¥
<
¥

Y/N

Transform X: Create G’ from G=(V,E) |V|=n where G’ has all edges.

wlu v):{l if(u,v) € E
’ cVl+1 if(u,v) ¢ E

Transform Y: if | TSP(G') | < |V
then output yes,

else no

Why does this work?

Edges not in the original graph are so costly that there is a gap between the cost of a tour if G
contains a Ham cycle (cost=n) and cost of tour if G doesn’t (cost < ¢|V|]).

Online Algorithms

For input sequence p1,pa,...,p, (very large) an online algorithm must produce an output
given p1,p2, ..., pn (without seeing p1, pa, ..., pn) for each i

ex.

Page replacement in cache

P1, P2, ---, Pn 1S & sequence of page requests made by a program

k is cache size (number of pages)

At ith request, p;, the cache contains some k pages If p; is not in cache (page fault) some page must
be evicted from cache to make room for p;, then p; is added to cache.

The cost of a page replacement algorithm A on a sequence p1, p2, ..., P is fa(p1,p2, ..., pn) = number
of faults on p1,p2, ..., Pn

Online algorithm must decide what page to evict without knowing future requests.

ex.
Page Replacement Algorithms:

Least Recently Used (LRU) - evict each page whose most recent request occurred furthest in
the past

Least Frequently Used (LFU) - evict page that has been requested least often
Marking Algorithms - poor man’s LRU with randomization

First In First Out (FIFO) - evict page that has been in cache longest
How do we decide best online algorithm?

1) Worst-case performance

fLrRu(P1, P2, -, Pn) =10
maz(p1,p2, - Pn) =\ fLru(pr,p2, ... pn) = n
frrro (p1, p2; -+ Pn) = 1
2) Average case performance m = total number of pages possibly requested
Expected number of page faults on a sequence of randomly, uniformly, independently chosen
pages: E[furu(p1,p2, - pn)] = (1 - K/M) * N
Elfuru(p1,p2, ..., pn)] = (1 - K/M) * N
Elfrro(p1,p2; s pn)] = (1 - K/M) * N
3) Competitive Analysis
How does the online algorithm’s performance compare to that of the best offline algorithm?
An online algorithm A is c-competitive
if there exists b
for all p1,po, ..., pn

fa(p1,p2, - 0n) < ¢ fopT(P1,D2, s Pn) + b, fopT knows future

Thm LRU and FIFO are k-competitive

Thm If A is deterministic online algorithm for paging then ¢ > k

