
CS420+500: Advanced Algorithm Design and Analysis

Lectures: March 22 + March 24, 2017

Prof. Will Evans Scribe: Sean Copeland

Euclidean TSP is NP-hard [Papadimitriou ’77]

Hamiltonian Cycle: Given an unweighted graph G

Does G contain a cycle that visits every vertex once?

Hardness of Approximation

The general TSP is NP-hard to approximate

Claim:

If P 6= NP

then there is no polynomial time c-approximation algorithm for TSP.

Transform X: Create G′ from G=(V,E) |V|=n where G′ has all edges.

w(u, v) =

{
1 if(u, v) ∈ E

c|V |+ 1 if(u, v) 6∈ E

Transform Y: if | TSP(G′) | ≤ c|V |

then output yes,

else no

Why does this work?

Edges not in the original graph are so costly that there is a gap between the cost of a tour if G
contains a Ham cycle (cost=n) and cost of tour if G doesn’t (cost ≤ c|V ||).

Online Algorithms

For input sequence p1, p2, ..., pn (very large) an online algorithm must produce an output
given p1, p2, ..., pn (without seeing p1, p2, ..., pn) for each i

ex.

Page replacement in cache

1

p1, p2, ..., pn is a sequence of page requests made by a program

k is cache size (number of pages)

At ith request, pi, the cache contains some k pages If pi is not in cache (page fault) some page must
be evicted from cache to make room for pi, then pi is added to cache.

The cost of a page replacement algorithm A on a sequence p1, p2, ..., pn is fA(p1, p2, ..., pn) = number
of faults on p1, p2, ..., pn

Online algorithm must decide what page to evict without knowing future requests.

ex.

Page Replacement Algorithms:

Least Recently Used (LRU) - evict each page whose most recent request occurred furthest in
the past

Least Frequently Used (LFU) - evict page that has been requested least often

Marking Algorithms - poor man’s LRU with randomization

First In First Out (FIFO) - evict page that has been in cache longest

How do we decide best online algorithm?

1) Worst-case performance

max(p1, p2, ..., pn) =


fLRU(p1, p2, ..., pn) = n

fLFU(p1, p2, ..., pn) = n

fFIFO(p1, p2, ..., pn) = n

2) Average case performance m = total number of pages possibly requested

Expected number of page faults on a sequence of randomly, uniformly, independently chosen

pages: E[fLRU(p1, p2, ..., pn)] = (1 - K/M) * N

E[fLFU(p1, p2, ..., pn)] = (1 - K/M) * N

E[fFIFO(p1, p2, ..., pn)] = (1 - K/M) * N

3) Competitive Analysis

How does the online algorithm’s performance compare to that of the best offline algorithm?

An online algorithm A is c-competitive

if there exists b

for all p1, p2, ..., pn

fA(p1, p2, ..., pn) ≤ c ∗ fOPT(p1, p2, ..., pn) + b, fOPT knows future

2

Thm LRU and FIFO are k-competitive

Thm If A is deterministic online algorithm for paging then c ≥ k

3

