
Mar.22+Mar.24

Euclidean TSP is NP-hard [Papadimitriou, 1977]

Hamiltonian Cycle Problem: Given an unweighted graph G, does G contain a cycle that visits

every vertex exactly once?

Hardness of Approximation

The general TSP is NP-hard to approximate

Claim: If P ≠ NP, then there is no polynomial time c-approximation algorithm for TSP.

Proof: Suppose A is a polynomial time c-approximate algorithm for TSP, we use A to solve

Hamiltonian cycle problem.

 Hamiltonian Cycle problem

G G’

 c-approx.

Transform X:

Create G’ from G=<V, E> such that G’ has all edges. Assign weights to edges in G’ as

follows:

w (u, v) ={
1 if (u, v) ∈ G

 c ∗ |V| + 1 if (u, v) ∉ G

(i.e. using a non-existing edge is (much) worse than using an existing one)

Transform Y:

 If |TSP(G’) | ≤ c*|V| then output “Yes”, return “No” otherwise.

Correctness of reduction:

Edges not in the original graph are so costly that there is a gap between cost of tour if

G contains a Hamiltonian cycle (cost = u) and cost of tour if G doesn’t (cost > c*|V|)

New topic: Online Algorithms

For input sequences p1p2…pn(very large), an online algorithm must produce an output given

p1p2…pi(without seeing pi+1…pn) for each i.

Example:

Page replacement in cache

P1p2…pn is a sequence of page requests made by a program, k is a cache (number of pages). At

i-th page request, pi, the cache contains some k pages. If pi is not in cache (page fault), some

page must be evicted from cache to make room for pi then pi is added to cache. The cost of a

page replacement algorithm A on a sequence p1p2p3...pn is fA(p1p2p3..pn) = the number of faults

on p1p2…pn

X A Y

Online algorithm must decide what page to evict without knowing the future request.

Examples of page replacement algorithms:

1. Least Recently Used (LRU):

Evict page whose most recent request occurred furthest in the past (the least recently used

page).

2. Least Frequently Used (LFU):

Evict page that has been requested least often.

3. Marking Algorithms: “poor man’s LRU” with randomization.

4. FIFO (First In First Out):

Evict page that has been in cache longest.

How do we decide the “best” online algorithm?

1. Worst case performance

max{

𝑓𝐿𝑅𝑈(𝑝1𝑝2 … 𝑝𝑛) = 𝑛

𝑓𝐿𝐹𝑈(𝑝1𝑝2 … 𝑝𝑛) = 𝑛

𝑓𝐹𝐼𝐹𝑂(𝑝1𝑝2 … 𝑝𝑛) = 𝑛

2. Average case performance

m = total number of pages possibly requested. Expected number of page faults on sequence

of randomly, uniformly, independently chosen pages:

E[f LFU
𝐿𝑅𝑈
𝐹𝐼𝐹𝑂

(p1p2…pn)] = (1-k/m)*n

3. Competitive Analysis

How does online algorithm’s performance compare to best offline algorithm?

Definition: An online algorithm A is c-competitive if exist b such that for all p1p2…pn:

 fA(p1p2…pn) ≤ c*fOPT(𝑝1𝑝2 … 𝑝𝑛) + 𝑏 where b is an arbitrary constant

Theorem: LRU and FIFO are k-competitive where k is the cache size.

Theorem: If A is a deterministic online algorithm for paging, then c>=k.

