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Euclidean TSP is NP-hard [Papadimitriou, 1977] 

 

Hamiltonian Cycle Problem: Given an unweighted graph G, does G contain a cycle that visits 

every vertex exactly once? 

 

Hardness of Approximation 

 

The general TSP is NP-hard to approximate 

Claim: If P ≠ NP, then there is no polynomial time c-approximation algorithm for TSP. 

Proof: Suppose A is a polynomial time c-approximate algorithm for TSP, we use A to solve 

Hamiltonian cycle problem. 

      Hamiltonian Cycle problem 

 

G G’ 

 

 c-approx. 

 

Transform X: 

Create G’ from G=<V, E> such that G’ has all edges. Assign weights to edges in G’ as 

follows: 

w (u, v) ={
1 if (u, v)  ∈  G

 c ∗ |V| + 1 if (u, v)  ∉  G
  

(i.e. using a non-existing edge is (much) worse than using an existing one) 

 

Transform Y: 

 If |TSP(G’) | ≤ c*|V| then output “Yes”, return “No” otherwise. 

 

Correctness of reduction: 

Edges not in the original graph are so costly that there is a gap between cost of tour if 

G contains a Hamiltonian cycle (cost = u) and cost of tour if G doesn’t (cost > c*|V|) 

 

New topic: Online Algorithms 

For input sequences p1p2…pn(very large), an online algorithm must produce an output given 

p1p2…pi(without seeing pi+1…pn) for each i. 

 

Example: 

Page replacement in cache 

P1p2…pn is a sequence of page requests made by a program, k is a cache (number of pages). At 

i-th page request, pi, the cache contains some k pages. If pi is not in cache (page fault), some 

page must be evicted from cache to make room for pi then pi is added to cache. The cost of a 

page replacement algorithm A on a sequence p1p2p3...pn is fA(p1p2p3..pn) = the number of faults 

on p1p2…pn 

X A Y 



Online algorithm must decide what page to evict without knowing the future request.  

 

Examples of page replacement algorithms: 

1. Least Recently Used (LRU): 

Evict page whose most recent request occurred furthest in the past (the least recently used 

page). 

 

2. Least Frequently Used (LFU): 

Evict page that has been requested least often. 

 

3. Marking Algorithms: “poor man’s LRU” with randomization. 

 

4. FIFO (First In First Out): 

Evict page that has been in cache longest. 

 

 

How do we decide the “best” online algorithm? 

1. Worst case performance 

max{

𝑓𝐿𝑅𝑈(𝑝1𝑝2 … 𝑝𝑛) = 𝑛

𝑓𝐿𝐹𝑈(𝑝1𝑝2 … 𝑝𝑛) = 𝑛

𝑓𝐹𝐼𝐹𝑂(𝑝1𝑝2 … 𝑝𝑛) = 𝑛

 

 

2. Average case performance  

m = total number of pages possibly requested. Expected number of page faults on sequence 

of randomly, uniformly, independently chosen pages: 

E[f LFU
𝐿𝑅𝑈
𝐹𝐼𝐹𝑂

(p1p2…pn)] = (1-k/m)*n 

3. Competitive Analysis 

How does online algorithm’s performance compare to best offline algorithm? 

Definition: An online algorithm A is c-competitive if exist b such that for all p1p2…pn: 

  fA(p1p2…pn) ≤ c*fOPT(𝑝1𝑝2 … 𝑝𝑛) + 𝑏 where b is an arbitrary constant 

Theorem: LRU and FIFO are k-competitive where k is the cache size. 

Theorem: If A is a deterministic online algorithm for paging, then c>=k.  


