
CS420+500: Advanced Algorithm Design and Analysis

Lectures: March 22nd + 24th, 2017

Prof. Will Evans Scribe: Ben Chugg

In this lecture we:

• Defined and discussed hardness of approximation with applications to the TSP;

• Discussed online algorithms with applications to page replacement;

• Introduced competitive analysis.

As an interesting addendum to the last lecture, we remark that it was in fact Christos Papadim-
itriou who showed that the Euclidean Travelling Salesman Problem (and Euclidean Tour TSP and
Manhattan TSP) is NP-Complete [1].

1 Hardness of Approximation

There are hard problems, and then there are HARD problems. How does one capture the intuitive
notion that even approximating certain problems is computationally difficult?

We may proceed along the same lines as when showing any problem is NP-hard or NP-complete.
Consider the following example.

1.1 TSP is Hard to Approximate

First, recall that a Hamiltonian cycle in a graph is a cycle that visits each vertex exactly once.
The Hamiltonian Cycle Problem (HCP) asks, given an unweighted graph G, does G contain
a Hamiltonian cycle?

Lemma 1. Unless P = NP , there is no polynomial-time c-approximation algorithm for TSP.

Proof. We will reduce from HCP; we begin with the construction. Suppose that A is a polynomial
time c-approximation algorithm for TSP. We will use A to solve HCP. Let an unweighted graph
G = (V,E) be given, and set n = |V |. Consider the complete graph on n vertices, Kn, which can
obtained by filling in all non-existent edges in G. Write Kn = (V,E∪E) where E is the complement
edge set to edges of E. Define a weight on the edge set of Kn as follows. Let w : E ∪ E → R give
the edge weights and set

w(u, v) =

{
1, if (u, v) ∈ E
cn+ 1, if (u, v) ∈ E

.

Now, run A on the graph Kn, and let the result be denoted TSPA (Kn). If the size of the tour
given by A is less than or equal to cn, that is, |TSPA (Kn)| ≤ cn then return yes. Otherwise return
no.

1

To see correctness, suppose that |TSPA (Kn)| ≤ cn. Then this tour must have used only original
edges from the graph (other edges weigh too much) and, by definition of a tour, visited each vertex
exactly once. Since vertices of Kn are vertices of G, it follows that G contains a Hamiltonian Cycle.

Conversely, suppose that G contains a Hamiltonian Cycle. We claim that this tour constitutes a
solution to TSP in Kn. This tour has weight n since there are n edges on the tour and since all
edges have weight ≥ 1, there cannot be a smaller tour. J

Remark 2. In the above proof, we have not used the fact that c is a constant. Indeed, c can be any
polynomial time computable function with codomain R≥1. Note that it must be polynomial time
computable because constructing the input graph to A must be a polynomial time construction.

2 Online Algorithms

Consider an optimization problem in which the values over which we’re optimizing are not all
known. An algorithm which must make decisions based only on the parameters seen so far is called
an Online Algorithm. More formally, for an input sequence p1, . . . , pn (where n is typically large),
an online algorithm must produce an output given p1, p2, . . . , pi - without knowledge of pi+1, . . . , pn
- for all i ∈ {1, . . . , n}.

2.1 Page Replacement in Caches

To initiate our exploration of online algorithms, we will study online page replacement. We briefly
recall some facts from the study of operating systems. A machine is said to have cache size k ∈ N
if it can fit k pages in its cache. A page is some fixed length block of (virtual) memory. Programs
access data by means of the cache, therefore the cache must update the pages it keeps based on
the requirements of a program.

Let us formalize the problem of online page replacement.

Online Page Replacement. Let p1, . . . , pn be a sequence of page requests made by a program
on a machine with cache size k ∈ N. Before each page request, pi, the cache contains some k pages
which may or may not include pi. If pi is not in the cache (i.e., a page fault), then a page is evicted
from the cache and pi is added. We define the cost of a page replacement algorithm, A , on a
sequence p1, . . . , pn of requests to be

fA (p1, . . . , pn) ≡ number of page faults on p1, . . . , pn.

Some examples of online replacement algorithms are as follows:

1. Least Recently Used (LRU). Here, the algorithm evicts the page whose most recent request
occurred furthest in the past (i.e., the page was the least recently used).

2. Least Frequently Used (LFU). Here, the algorithm evicts the page that has been requested
the least often.

3. Marking Algorithms (a class of algorithms). Here, each page is labeled as either marked or
unmarked. Initially, all pages begin as unmarked. If a page is requested, it is marked. When

2

a page fault occurs, it evicts a random unmarked page. If all pages are marked, it clears the
marks and keeps going.

4. First-In-First-Out (FIFO). Here, pages are evicted in the order in which they were received.

The optimal, yet impossible, algorithm is Belady’s algorithm commonly known as Furthest in the
Future. Here, we evict the cache page which is used the furthest in the future. For a proof that
Belady’s algorithm is optimal see [2].

2.2 Analyzing Online Algorithms

Typically, computer scientists tend to be pessimistic and are interested in the worst case perfor-
mance of algorithms. Consider, however, attempting a worst case analysis for online page re-
placement. We may always adversarially pick a sequence of page requests that gives worst case
performance (e.g., all distinct pages). Therefore, for any online page replacement algorithm A ,

max
p1,...,pn

fA (p1, . . . , pn) = n,

and this doesn’t give us any insight into the differing performances of distinct algorithms.

Our next attempt might be to try an average case performance analysis. Let m be the total number
of pages possibly requested, and assume that the pages are independent with respect to one another
and are drawn from a uniform distribution. Recalling that k is the cache size, k/m is then the
probability that an arbitrary page is in the cache. Therefore, 1 − k/m is the probability than a
page is not in the cache, and

E[fA (p1, . . . , pn)] =
n∑

i=1

Pr(Page pi not in cache) =
n∑

i=1

(1− k/m) = n

(
1− k

m

)
,

for any algorithm A . This may be a better approximation than the worst case analysis, however
it is still not unique to the algorithm. We turn, therefore, to competitive analysis as a more
discriminating method of online algorithm analysis.

2.2.1 Competitive Analysis

In the competitive analysis of an online algorithm, we ask how its performance compares to the
best offline algorithm.

Definition 3. An online algorithm A is c-competitive if there exists α ∈ R such that for all
sequences of requests p1, p2, . . . , pn,

fA (p1, . . . , pn) ≤ cfOPT (p1, . . . , pn) + α,

where OPT is the best offline algorithm which knows the future. The factor c is called the compet-
itive ratio of A .

Remark 4. What’s the deal with the constant additive factor α? It represents cost that is not
associated to the size of the input. Roughly speaking, if α ≤ 0, then A is ”better” (with respect
to cfOPT) by a constant additive amount α on any input. Similarly, if α ≥ 0, then A is ”worse”
by α on any input.

3

We conclude by stating two theorems which will be proved next class.

Theorem 5. LRU and FIFO are k-competitive online page replacement algorithms, where k is the
cache size.

Theorem 6. If A is any deterministic c-competitive online algorithm for paging then c ≥ k.

Combining these two theorems imply that LRU and FIFO are optimally competitive online page
replacement algorithms.

References

[1] Christos H. Papadimitriou, The Euclidean travelling salesman problem is NP-complete, Theo-
retical Computer Science, Volume 4, Issue 3, 1977, Pages 237-244.

[2] Jon Kleinberg and Eva Tardos. 2005. Algorithm Design, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

4

