CS420+4-500: Advanced Algorithm Design and Analysis

Lectures: Mar 20 + Mar 22, 2017
Prof. Will Evans Scribe: Yuefan Liu

In this lecture we discussed :

e Concepts (in Approximation TSP);
e Approximate algorithm for ATSP;

e Fuclidean TSP is NP-hard.

1 Concepts (in Approximation TSP)

e TSP (traveling salesman)
Given: a graph with edge weights
Return: visit every vertex (and return home) exactly once, using smallest total weight

e ATSP (Triangle TSP)
Edge weight obey triangle inequality
i.e. @ = ¢ — b cost more than a — b
e.g.

. N
b S .

triangle inequality: d(a,b) < d(a,c) + d(c,b)

2 Christofides algorithm for ATSP (1976)

1. Find T = minimum spanning tree of G

2. Compute minimum length complete (perfect) matching M in the complete graph on odd-
degree vertices of T

3. Find Euler tour E in T U M (a Euler cycle exists when all vertices are even degree in the
graph, and the Euler cycle visit every edge exactly once)

4. Eliminate repeated vertices from E to get TSP tour R

Image:

v

€19, A E
I fT : Ewler tour £
Qj/“i 7 TSP Jour R

G-aof.d‘fiﬁn’:ﬂ verties —of T
oen - posfect ma‘tc&mg M.
[g f il a
Note: e A perfect matching always exists in step 2 because there are an even number of odd-
degree vertices (remind that the total degree of all vertices in the graph is even)
e Euler tour exists because every vertex in T U M has even degree

e TSP tour minus one edge is a spanning tree, so |T| < |TSP(G)| — — — @ , where T is
the total edge weight

e This graph shows two matchings for odd degree vertices: one Blue B, one green D

Note that the cycle in the figure is a minimum tour. Therefore, the total weight of the
edges of B and D is at most the minimum tour length

|B| +|D| < |TSP(G)| = |M| < {TSP(G)| — — — @ , because |M| is the minimum
weight matching, |M| < |Bland|M| < |D|

e From (D and @): Euler tour E has |E| < 3/2|T'SP(G)]
e |[R| <|E| <3|TSP(G)

3 Euclidean TSP is NP-hard [Papadimitrion 77|

e Hamiltonian Cycle:
Given: unweighted graph G
Return: does G contain a cycle that visit every vertex once?

e Hardness of Approximation

— What we know: the general TSP is NP-hard to approximate
— Claim: if P # NP, then there is no polynomial time c-approximation algorithm for TSP
— Proof:

* Suppose A is a polytime c-approx algorithm for TSP
x We use A to solve Hamiltonian cycle

e AV ame =

| L..w;’h{'.af}
é i .'_'___{ i. :" zj | O ’_r‘f |
A B N e e T >/

A -

\Ham. il M

- , —— ———

* Transform X:
- Create G’ from G = (V,E), |[V|=n
- G' has all edges: w(u,v) = 1((u,v) € G),c|V|+ 1((u,v) ¢ G)
* transform Y: if [TSPA(G)| < ¢|V|, then output YES otherwise NO
— Why does this work?

Edges not in the original graph are so costly that there is a gap between cost of tour if
G contains a Hamiltonian cycle (cost = n) and cost of tour if G does not (cost > ¢|V|)

