> CS420+500: Advanced Algorithm Design and Analysis
> Lectures: March 17th, 2017
> Prof. Will Evans
> Scribe: Jennifer (Xin Bei) She

In this lecture we discussed examples of approximation algorithms including

- Greedy and matching vertex cover algorithms for minimum vertex cover
- Greedy approximation for list scheduling

Handouts (posted on webpage): none
Reading: Jeff Erickson's notes on approximation algorithms

1 Minimum Vertex Cover

Given an undirected graph $G=(V, E)$, find the smallest set of vertices $S \subset V$ such that all edges in G have at least 1 endpoint in S.

```
Algorithm 1 Greedy
    repeat
        add vertex \(v \in G\) with highest degree to \(S\)
        remove \(v\) and all incident edges of \(v\) from \(G\)
    until no vertices left in \(G\)
```

Guarantee: size of greedy vertex cover $\leq \log (n) \times$ OPTVC for all graphs

```
Algorithm 2 Matching Vertex Cover
    \(S=\emptyset\)
    repeat
        pick edge \((u, v) \in G\) (any edge)
        remove \((u, v)\) from \(G\) and all edges adjacent to \(u\) or \(v\)
        add \(u\) and \(v\) to \(S\)
    until no edges left in \(G\)
```

Example: $S=\{a, b, c, d, e, f\}$

Claim: MVC is a 2 -approximation for vertex cover
Proof: we don't know how big $\operatorname{OPTVC}(G)$ is but we can lower bound its size

- $|\operatorname{OPTVC}(G)| \geq$ number of edges picked by MVC (because edges selected by MVC form a matching and no vertex covers more than 1 edge in a matching)
- number of vertices picked by MVC is $2 \times$ number of edges picked
$\Rightarrow|\operatorname{MVC}(G)| \leq 2 \times|\operatorname{OPTVC}(G)|$

2 List Scheduling (Graham 1966)

Given n jobs and m (identical) machines, where job i must execute uninterruptedly for p_{i} time units and each machine can work on 1 job at a time, find a schedule of jobs that minimizes completion time.

Greedy algorithm: whenever a job becomes idle, assign the next job to it.

Example: p_{i} 's $=5,7,17,10,9,30$
Greedy solution:

Optimal solution:

One benefit of this algorithm is that it can be an online algorithm, whereas an algorithm that requires sorting the jobs can only be performed offline.

Claim: $\left|\operatorname{GREEDY}\left(p_{i}, p_{2}, \ldots, p_{n}\right)\right| \leq\left(2-\frac{1}{m}\right)|\operatorname{OPT}(p 1, \ldots, p n)|$
Proof:

- $\operatorname{OPT} \geq p_{i}, \forall i$
- $\operatorname{OPT} \geq \frac{\sum p_{i}}{m}$
let k be the last job to finish and s_{k} be the start time of job k

$$
\begin{aligned}
p_{k} & \leq \mathrm{OPT} \\
s_{k} & \leq \frac{\sum_{i \neq k} p_{i}}{m} \\
s_{k}+p_{k} & \leq \frac{1}{m} \sum_{i \neq k} p_{i}+p_{k} \\
& =\frac{1}{m} \sum p i+\left(1-\frac{1}{m}\right) p_{k} \\
& \leq \mathrm{OPT}+\left(1-\frac{1}{m}\right) \times \mathrm{OPT} \\
& =\left(2-\frac{1}{m}\right) \times \mathrm{OPT}
\end{aligned}
$$

