

In this lecture, we discussed approximation algorithms for:

 Minimum Vertex Cover

 List Scheduling Approximation

Suggested Reading: http://jeffe.cs.illinois.edu/teaching/algorithms/notes/31-approx.pdf

1 Minimum Vertex Cover

Definition. Minimum vertex cover: given an undirected graph ,G V E , find the smallest set of

vertices S V such that all edges in G have at least one endpoint in S

Greedy Algorithm for Minimum Vertex Cover [GreedyVC]:

1. Include in S the vertex with the highest degree (largest number of connected edges)

2. Remove the vertex and all incident edges from G

3. Repeat Steps 1-2 until no edges are left in G

Guarantee: the size of logGreedyVC n OPTVC for all graphs

Matching Vertex Cover [MVC]:

1. Set S

2. Pick any edge in the graph: ,u v G

a. Remove ,u v from G and all edges that are adjacent to u or v

b. Add ,u v to S

3. Repeat 2 until no edges are left in G

Claim: MVC is a 2-approximation for minimum vertex cover

 We don’t know how big ()OPTVC G is but we can get the lower bound for its size

Proof:

1. #OPTVC G edges picked by MVC because the edges form the matching; no vertex

covers more than one edge in a matching

2. # vertices picked by MVC is 2 # edges picked 2MVC G OPTVC G

CS420+500: Advanced Algorithm Design and Analysis

Lecture: March 17, 2017

Prof. Will Evans Scribe: Stephen Kan

2 List Scheduling Approximation

(1966 – Ronald Graham of Graham’s Scan)

Definition. List Scheduling:

 Given n jobs, job i must execute uninterruptibly for iP time units.

 Given m identical machines, each machine can work on one job at a time

 Find a schedule of jobs that minimizes the overall completion time

Example:

iP : 5, 7, 17, 10, 9, 30: 6 jobs among 3 machines

Greedy Algorithm: Whenever a machine becomes idle, assign the next job to it.

Optimal Algorithm: the best possible job allocation

Another possible variant (not depicted): sort the jobs first from smallest to largest, then add to

machines in reverse size order.

17

7

5

9

10 30

0 5 10 15 20 25 30 35 40 45 50

Machine 3

Machine 2

Machine 1

Greedy Algorithm (G)

5

10

30

7

17

9

0 5 10 15 20 25 30 35

Machine 3

Machine 2

Machine 1

Optimal Algorithm (OPT)

Greedy Algorithm (G):

Whenever a machine becomes idle, assign the next job to it.

Claim: 1 2 1 2
1, , , 2 , , ,n nG P P P OPT P P P
m

 (A little better than 2-approximation)

Proof:

1. iOPT P for all i

2.
1

i
i

OPT P
m

 Note:
1

i
i

P
m
 is the perfect division of iP among machines, assuming jobs are interruptible

Let job k be the last job to finish. kP OPT by 1

Goal: show that the sum of jobs before kP on that machine is smaller than OPT , then the sum of the

iP s for all jobs on that machine is no more than 12 OPT
m

1. Let kS be the sum of the iP s for all jobs on that machine before kP .

2. Up to time kS (when work starts on job k), all machines have been busy. That means the total

amount of work that has been done up to time kS is kmS . This work is on jobs other than job

k . So i k
i k

P mS

 or, after rearranging,
1

k i
i k

S P
m

3. Combining (1) and (2):

1 1 1
1

1 1
1 2

k k i k i k
i k i

S P P P P P
m m m

OPT OPT OPT
m m

