
CPSC 420 — March 27 Lecture

Scribe: Stephanie Knill

1 Approximation Algorithms

Definition 1.1. Approximation Algorithm1

ρ-approximation if for every input I with optimal solution value OPI(I), then output of
algorithm A(I) is close, i.e.

max
{ A(I)

OPT (I)
,
OPT (I)

A(I)

}
≤ ρ

1.1 Application: minimium vertex cover

Given an undirected graph G = (V,E), find the smallest set of vertices S ⊆ V such that
all edges in G have at least one endpoint in the set S.

Approaches

1. Greedy Algorithm

Repeat:

Include in S the vertex with highest degree

Remove vertex from G and all incident edges

Pros / Cons

• (-) Guaranteed Approximation factor gets worse/grows as ↑ n:

|GreedyVC(G)| ≤ log n · |OPTVC(G)|

1See Jeff Erikson’s notes on Approximation Algorithms for further reading.

1

Stephanie Knill

2. Matching Vertex Cover (MVC) Algorithm

Repeat:

S = {}

Pick any edge (u, v) in G

Remove (u, v) from G and all edges adjacent to u or v

Add u and v to S

Pros / Cons

• (+) Better Approximation: guarantees for all graphs

|MVC(G)| ≤ 2 · |OPTVC(G)|

Proposition 1.1. MVC is a 2-approximation for VERTEX COVER

• Rmk: We don’t know how big OPTVC(G) is, but we can lower bound its size

Proof. Since |OPTVC(G)| ≥#edges picked by MVC (because edges selected by MVC
form a matching, thus no vertex covers more than one edge in a matching), then the
#vertices picked by MVC is 2· #edges picked. Thus we have

|MVC(G)| ≤ 2 · |OPTVC(G)|

�

Page 2 of 5

Stephanie Knill

1.2 Application: list scheduling (Graham, 1966)

Given

• n jobs, where job i must execute uninterruptedly for pi time units

• m (identical) machines, where each machine can work on one job at a time

Find a schedule of jobs that minimizes the completion time (time when last machine
finishes).

Approaches

1. Greedy Algorithm

Repeat:

Whenever machine beomes idle, assign next job to it

Pros / Cons

• (+) Decent Approximation: guarantees for all graphs

|Greedy(p1, . . . , pn)| ≤
(

2− 1

m

)
· |OPT(p1, . . . , pn)|

Proposition 1.2. MVC is a
(

2− 1
m

)
-approximation for LIST SCHEDULING

Proof.

• OPT ≥ pi, ∀i

• OPT ≥
∑

i pi
m

• Let job k be last job to finish. Then pk ≤ OPT and the time when job k starts
executing sk is bounded by

sk ≤
∑

i 6=k pi

m

Thus

sk + pk ≤
1

m

∑
i 6=k

pi + pk =
1

m

∑
i

pi + (1− 1/m)pk

≤ OPT + (1− 1/m)OPT

= (2− 1/m)OPT

Page 3 of 5

Stephanie Knill

which gives us our desired result

|MVC(G)| ≤
(

2− 1

m

)
· |OPTVC(G)|

�

Example
For the n = 6 jobs with time units p = {5, 7, 17, 10, 9, 30} the greedy algorithm (Figure
1) gives us

Figure 1: Greedy algorithm for list scheduling problem.

a total time of 45 units.

Sorted Greedy Algorithm

Repeat:

Sort job array in descending order

Greedy Algorithm: whenever machine beomes idle, assign next job to it

Example
For the n = 6 jobs with time units p = {5, 7, 17, 10, 9, 30} the greedy algorithm (Figure
2) gives us a total time of 30 units.

Page 4 of 5

Stephanie Knill

Figure 2: Sorted greedy algorithm for list scheduling problem.

Page 5 of 5

	Approximation Algorithms
	Application: minimium vertex cover
	Application: list scheduling (Graham, 1966)

