Mar 8
Theorem: CLIQUE is NP-hard
- Reduce SAT to CLIQUE
- Transform a formula ¢ into a graph G and int k such that:
- G contain a clique of size k iff ¢ is satisfiable
- transformation is in poly time
- Transformation Steps:
1. Create a vertex for every literal in every clause.

2. Connect a vertex from ith clause to vertex from jth clause (i =/=j ) unless they
are negation of each other.

3. Let k= # clause in ¢

Example: ¢=(x1)A(~x1 v~x2)A(x1 v x3)A(x2 v~x3 v x4) k=4




Proof.

=>) if ¢ has a truth assignment => every clause has at least one true literal => choose one from
each clause => you will have a clique of size k

<=) if G has a k_clique Q => exactly one vertex from each clause is in Q => assign one to each
literal vertex => ¢ is satisfied

Mar 9

Vertex cover problem: Given a undirected graph G = (V,E) and integer k, does G have a vertex
cover of size k?

Definition: Vertex cover is a set of vertices S ¢ V such that all edges in G have at least one end
point in S. VC={ <G,k> | G has a Vertex Cover of size k}

Theorem: VC is NP-complete

Proof. 1. VC € NP : certificate (withess) a VC S ¢ V of size k. The verifier checks that ISI = k and
check for each (u,v) e Ethatue Sorv e S.

2. CLIQUE — VC (reduction from CLIQUE to VC)

~G : the complement of G : ~G = (V,~E) where ~E = {(u,v)I(u,v) is not in E}.




Claim: G has a clique of size k iff G' = ~G has VC of size k’ =IVI-k
Proof.

=) if G has a clique SeV, then V=S is a VC for ~G. Consider if (u,v) € ~G, then (u,v) is

not in G, which also implies either u or v is not in S and either u or visin V -S.
Therefore, (u, v) is covered.

<) let RcV be a vertex cover of ~G= This means that every edge in ~G that is incident

to a vertex in V-R must have its other endpoint in R. Thus no edge in ~G
connects two vertices in V-R, which means V-R is a clique in G.
Theorem: 3 SAT is in NP-complete
3-SAT ={¢ | each clause has at most 3 literals and ¢ is in SAT}
Idea of proof: We show how to transform a formula ¢ for SAT (which might contain clauses
with more than 3 literals) into a formula ¢' for 3SAT (in which every clause has at most 3
literals), so that the new formula ¢' is satisfiable if and only if the original formula ¢ is
satisfiable. So for every clause in ¢ with more than three literals, (a1 or az or ... or ax) where k>3
and ai is a literal (a variable or its negation), create k-2 clauses for ¢'": (a1 or a2 or y1) and (~y1 or
as or yz2) and (~y2 or a4 or ys) and ... and (~yk-3 Or ak-1 Or ax).
Claim: ¢ is satisfiable iff ¢’ is satisfiable.
Proof:

=)If ¢ is satisfiable, then there is a truth assignment so that each clause has a true literal. Let ai

be a true literal for clause C=(a1vazv-:-vax),then set y1,yz,...,yi-2 to true and

yi-1,Yi,...,yk-3 to false. In this way, every one of the 3-SAT clauses derived from C is
satisfied.

<)If ¢’ is satisfiable, then every one of the 3-SAT clauses derived from C = (a1vazv---vak) has a



true literal. At least one of the ai’s must be true. Otherwise, if all ai’s are false, y1 must be
true (to satisfy the first 3-SAT clause) which implies y2 must be true (to satisfy the
second 3-SAT clause) which implies, eventually, that yk-s must be true which implies that
the last 3-SAT clause is false: a contradiction. Since at least one of the ai’s is true, the

clause C is satisfied



