Mar 8

Theorem: CLIQUE is NP-hard

- Reduce SAT to CLIQUE
- Transform a formula $\boldsymbol{\varphi}$ into a graph G and int k such that:
 - G contain a clique of size k iff φ is satisfiable
 - transformation is in poly time
- Transformation Steps:
 - 1. Create a vertex for every literal in every clause.
 - 2. Connect a vertex from ith clause to vertex from jth clause (i =/= j) unless they are negation of each other.
 - 3. Let k = # clause in φ

Example: $\phi = (x1) \land (\sim x1 \lor \sim x2) \land (x1 \lor x3) \land (x2 \lor \sim x3 \lor x4) k=4$

Proof:

- =>) if φ has a truth assignment => every clause has at least one true literal => choose one from each clause => you will have a clique of size k
- <=) if G has a k_clique Q => exactly one vertex from each clause is in Q => assign one to each literal vertex => φ is satisfied

Mar 9

- **Vertex cover problem**: Given a undirected graph G = (V,E) and integer k, does G have a vertex cover of size k?
- Definition: Vertex cover is a set of vertices S ⊆ V such that all edges in G have at least one end point in S. VC={ <G,k> I G has a Vertex Cover of size k}

Theorem: VC is NP-complete

Proof: 1. VC ∈ NP : certificate (witness) a VC S ⊆ V of size k. The verifier checks that |S| = k and check for each (u,v) ∈ E that u ∈ S or v ∈ S.

2. CLIQUE \rightarrow VC (reduction from CLIQUE to VC)

~G : the complement of G : ~G = (V,~E) where ~E = {(u,v)I(u,v) is not in E}.

Claim: G has a clique of size k iff $G' = \sim G$ has VC of size k' =IVI-k Proof:

⇒) if G has a clique S∈V, then V–S is a VC for ~G. Consider if $(u,v) \in ~G$, then (u,v) is

not in G, which also implies either u or v is not in S and either u or v is in V -S. Therefore, (u, v) is covered.

```
⇐) let R \subseteq V be a vertex cover of \sim G \Rightarrow This means that every edge in \sim G that is incident
```

to a vertex in V-R must have its other endpoint in R. Thus no edge in \sim G

connects two vertices in V-R, which means V-R is a clique in G.

Theorem: 3 SAT is in NP-complete

3-SAT ={ ϕ I each clause has at most 3 literals and ϕ is in SAT}

Idea of proof: We show how to transform a formula ϕ for SAT (which might contain clauses with more than 3 literals) into a formula ϕ' for 3SAT (in which every clause has at most 3 literals), so that the new formula ϕ' is satisfiable if and only if the original formula ϕ is satisfiable. So for every clause in ϕ with more than three literals, (a₁ or a₂ or ... or a_k) where k>3 and a_i is a literal (a variable or its negation), create k-2 clauses for ϕ' : (a₁ or a₂ or y₁) and (~y₁ or a₃ or y₂) and (~y₂ or a₄ or y₃) and ... and (~y_{k-3} or a_{k-1} or a_k).

Claim: ϕ is satisfiable iff ϕ' is satisfiable.

Proof:

 \Rightarrow)If ϕ is satisfiable, then there is a truth assignment so that each clause has a true literal. Let ai

be a true literal for clause C=($a_1 \lor a_2 \lor \cdots \lor a_k$), then set y_1, y_2, \dots, y_{i-2} to true and

 $y_{i-1}, y_i, \dots, y_{k-3}$ to false. In this way, every one of the 3-SAT clauses derived from C is satisfied.

 \Leftarrow)If ϕ' is satisfiable, then every one of the 3-SAT clauses derived from C = $(a_1 \lor a_2 \lor \cdots \lor a_k)$ has a

true literal. At least one of the ai's must be true. Otherwise, if all ai's are false, y_1 must be true (to satisfy the first 3-SAT clause) which implies y_2 must be true (to satisfy the second 3-SAT clause) which implies, eventually, that y_{k-3} must be true which implies that the last 3-SAT clause is false: a contradiction. Since at least one of the ai's is true, the clause C is satisfied