Mar 8

Theorem: CLIQUE is NP-hard

- Reduce SAT to CLIQUE
- Transform a formula ϕ into a graph G and int k such that:
- G contain a clique of size k iff ϕ is satisfiable
- transformation is in poly time
- Transformation Steps:

1. Create a vertex for every literal in every clause.
2. Connect a vertex from ith clause to vertex from jth clause ($\mathrm{i}=/=\mathrm{j}$) unless they are negation of each other.
3. Let $\mathrm{k}=\#$ clause in ϕ

Example: $\phi=(x 1) \wedge(\sim x 1 \vee \sim x 2) \wedge(x 1 \vee x 3) \wedge(x 2 \vee \sim x 3 \vee x 4) k=4$

Proof:

=>) if ϕ has a truth assignment => every clause has at least one true literal => choose one from each clause => you will have a clique of size k
$<=$) if G has a k _clique $Q=>$ exactly one vertex from each clause is in $Q=>$ assign one to each literal vertex $=>\phi$ is satisfied

Mar 9
Vertex cover problem: Given a undirected graph $G=(V, E)$ and integer k, does G have a vertex cover of size k?

Definition: Vertex cover is a set of vertices $S \subseteq V$ such that all edges in G have at least one end point in $\mathrm{S} . \mathrm{VC}=\{<\mathrm{G}, \mathrm{k}>\mathrm{I} \mathrm{G}$ has a Vertex Cover of size k\}

Theorem: VC is NP-complete
Proof: 1. VC \in NP : certificate (witness) a VC S \subseteq V of size k. The verifier checks that $I S I=k$ and check for each $(u, v) \in E$ that $u \in S$ or $v \in S$.

2. CLIQUE \rightarrow VC (reduction from CLIQUE to VC)

$\sim G$: the complement of $G: \sim G=(V, \sim E)$ where $\sim E=\{(u, v) \mid(u, v)$ is not in $E\}$.

Claim: G has a clique of size k iff $\mathrm{G}^{\prime}=\sim \mathrm{G}$ has VC of size $\mathrm{k}^{\prime}=\mathrm{IVI}-\mathrm{k}$
Proof:
$\Rightarrow)$ if G has a clique $S \in V$, then $V-S$ is a $V C$ for $\sim G$. Consider if $(u, v) \in \sim G$, then (u, v) is not in G, which also implies either u or v is not in S and either u or v is in $V-S$. Therefore, (u, v) is covered.
$\Leftarrow)$ let $\mathrm{R} \subseteq \mathrm{V}$ be a vertex cover of $\sim \mathrm{G} \Rightarrow$ This means that every edge in $\sim \mathrm{G}$ that is incident to a vertex in V-R must have its other endpoint in R. Thus no edge in $\sim G$ connects two vertices in V-R, which means V-R is a clique in G .

Theorem: 3 SAT is in NP-complete
$3-$ SAT $=\{\phi \mid$ each clause has at most 3 literals and ϕ is in SAT $\}$
Idea of proof: We show how to transform a formula ϕ for SAT (which might contain clauses with more than 3 literals) into a formula ϕ^{\prime} for 3SAT (in which every clause has at most 3 literals), so that the new formula ϕ^{\prime} is satisfiable if and only if the original formula ϕ is satisfiable. So for every clause in ϕ with more than three literals, (a_{1} or a_{2} or ... or a_{k}) where $\mathrm{k}>3$ and a_{i} is a literal (a variable or its negation), create $k-2$ clauses for ϕ^{\prime} : (a_{1} or a_{2} or y_{1}) and ($\sim y_{1}$ or a_{3} or y_{2}) and ($\sim y_{2}$ or a_{4} or y_{3}) and ... and ($\sim y_{k-3}$ or a_{k-1} or a_{k}).

Claim: ϕ is satisfiable iff ϕ^{\prime} is satisfiable.
Proof:
$\Rightarrow)$ If ϕ is satisfiable, then there is a truth assignment so that each clause has a true literal. Let ai be a true literal for clause $\mathrm{C}=\left(\mathrm{a}_{1} \vee \mathrm{a}_{2} \vee \cdots \mathrm{a}_{\mathrm{k}}\right)$, then set $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}-2}$ to true and $y_{i-1}, y_{i}, \ldots, y_{k-3}$ to false. In this way, every one of the 3-SAT clauses derived from C is satisfied.
$\Leftarrow)$ If ϕ^{\prime} is satisfiable, then every one of the 3-SAT clauses derived from $C=\left(a_{1} v \mathrm{a}_{2} \vee \cdots \vee \mathrm{ak}_{\mathrm{k}}\right)$ has a
true literal. At least one of the ai's must be true. Otherwise, if all ai's are false, y_{1} must be true (to satisfy the first 3-SAT clause) which implies y2 must be true (to satisfy the second 3-SAT clause) which implies, eventually, that $\mathrm{y}_{\mathrm{k}-3}$ must be true which implies that the last 3-SAT clause is false: a contradiction. Since at least one of the ai's is true, the clause C is satisfied

