
Mar 8

Theorem: CLIQUE is NP-hard
              

     - Reduce SAT to CLIQUE
               
                 - Transform a formula φ into a graph G and int k such that:

- G contain a clique of size k iff φ is satisfiable

- transformation is in poly time
          
                 - Transformation Steps:

1. Create a vertex for every literal in every clause.

2. Connect a vertex from ith clause to vertex from jth clause ( i = ≠ j ) unless they            
    are negation of each other.

3. Let k= # clause in φ

Example: φ=(x1)∧(~x1 ∨~x2)∧(x1 ∨ x3)∧(x2 ∨~x3 ∨ x4)  k=4
   



Proof:
=> ) if φ has a truth assignment => every clause has at least one true literal => choose one from        

each clause => you will have a clique of size k

<= ) if G has a k_clique Q => exactly one vertex from each clause is in Q => assign one to each 
literal vertex => φ is satisfied

Mar 9

Vertex cover problem: Given a undirected graph G = (V,E) and integer k, does G have a vertex 
    cover of size k?

Definition: Vertex cover is a set of vertices S ⊆ V such that all edges in G have at least one end 
       point in S. VC={ <G,k> | G has a Vertex Cover of size k}

Theorem: VC is NP-complete

Proof: 1. VC ∈ NP : certificate (witness) a VC S ⊆ V of size k. The verifier checks that |S| = k and  
check for each (u,v) ∈ E that u ∈ S or v ∈ S.

2. CLIQUE → VC (reduction from CLIQUE to VC)

~G : the complement of G : ~G = (V,~E) where ~E = {(u,v)|(u,v) is not in E}.



Claim: G has a clique of size k iff G′ = ~G has VC of size k′ =|V|−k

Proof:

⇒) if G has a clique S∈V, then V−S is a VC for ~G. Consider if (u,v) ∈ ~G, then (u,v) is 

not in G, which also implies either u or v is not in S and either u or v is in V −S. 

Therefore, (u, v) is covered.

⇐) let R⊆V be a vertex cover of ~G⇒ This means that every edge in ~G that is incident 

to a vertex in V-R must have its other endpoint in R. Thus no edge in ~G 

connects two vertices in V-R, which means V-R is a clique in G.

Theorem: 3 SAT is in NP-complete

3−SAT ={φ | each clause has at most 3 literals and φ is in SAT}

Idea of proof: We show how to transform a formula φ for SAT (which might contain clauses 

with more than 3 literals) into a formula φ' for 3SAT (in which every clause has at most 3 

literals), so that the new formula φ' is satisfiable if and only if the original formula φ is 

satisfiable.  So for every clause in φ with more than three literals, (a1 or a2 or ... or ak) where k>3 

and ai is a literal (a variable or its negation), create k-2 clauses for φ': (a1 or a2 or y1) and (~y1 or 

a3 or y2) and (~y2 or a4 or y3) and ... and (~yk-3 or ak-1 or ak). 

Claim: φ is satisfiable iff φ′ is satisfiable.

Proof:

⇒)If φ is satisfiable, then there is a truth assignment so that each clause has a true literal. Let ai 

be a true literal for clause C=(a1∨a2∨···∨ak),then set y1,y2,...,yi−2 to true and 

yi−1,yi,...,yk−3 to false. In this way, every one of the 3-SAT clauses derived from C is 

satisfied.

⇐)If φ′ is satisfiable, then every one of the 3-SAT clauses derived from C = (a1∨a2∨···∨ak) has a 



true literal. At least one of the ai’s must be true. Otherwise, if all ai’s are false, y1 must be 

true (to satisfy the first 3-SAT clause) which implies y2 must be true (to satisfy the 

second 3-SAT clause) which implies, eventually, that yk−3 must be true which implies that 

the last 3-SAT clause is false: a contradiction. Since at least one of the ai’s is true, the 

clause C is satisfied


