CS420+500: Advanced Algorithm Design and Analysis

Lectures: Mar 8 + Mar 10, 2017

Prof. Will Evans

Scribe: Tianri Gu

In this lecture we:

- CLIQUE is NP-Hard
- VERTEX COVER is NP-Complete
- 3-SAT is NP-Complete

$1 \quad \textbf{CLIQUE} \in \textbf{NP-Hard}$

Key idea: reduce SAT to CLIQUE

Steps:

Transform a formula ϕ into a graph G and integer k so that

1. G contains a clique of size $k \iff \phi$ is satisfiable.

2. Transformation Is in polynomial time.

Transformation Steps:

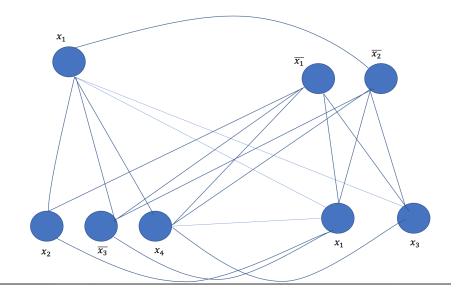
1. Create a vertex for every literal in every clause.

2. Connect a vertex from ith clause to vertex from jth clause ($i\neq j$) unless they are negation of each other.

3. Let k = # clause in ϕ

Example:

 $\phi = (x_1) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor x_3) \land (x_2 \lor \overline{x_3} \lor x_4)$ k = 4



Claim: $\phi \in SAT$ iff G has k-clique.

Proof:

 \Rightarrow) If ϕ has a truth assignment then every clause has at least one true literal. If we choose the vertex corresponding to one true literal from each clause, these vertices form a clique of size k = the number of clauses.

 \Leftarrow) If G has a k-clique then exactly one vertex from each clause is in the clique. If we assign each literal corresponding to these vertices the value true, then every clause has a true literal and ϕ is satisfiable.

2 VERTEX COVER is NP-Complete

Vertex Cover Problem:

Given undirected graph G = (V, E) and integer k. Does G have a vertex cover of size k.

Vertex Cover: Is a set vertices $S \subseteq V$ such that all edges in G have at least one end point in S.

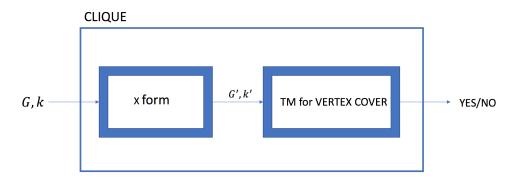
 $VC = \{ \langle G, k \rangle \mid G \text{ has a Vertex Cover of size } k \}$

Theorem: $VC \in NPC$

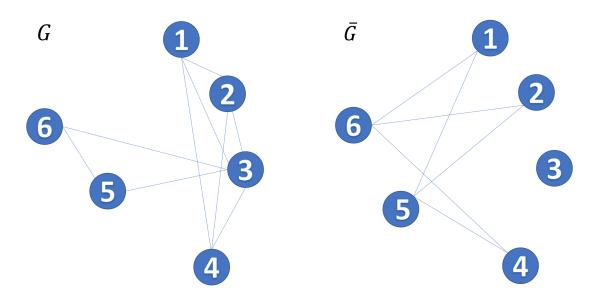
Proof:

1. $VC \in NP$: certificate(witness) a $VC \ S \subseteq V$ of size k. The verifier checks that |S| = k and check for each $(u, v) \in E$ that $u \in S$ or $v \in S$.

2. CLIQUE
$$\longrightarrow VC$$



 \overline{G} : the complement of $G:\overline{G}=(V,\overline{E})$ where $\overline{E}=\{(u,v)|(u,v)\notin E\}$.



Claim: G has a clique of size k \iff $G' = \overline{G}$ has VC of size k' = |V| - k

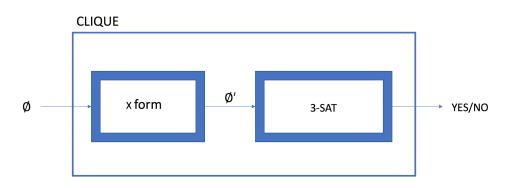
Proof:

 \Rightarrow) if G has a clique $S \in V$, then V - S is a VC for \overline{G} . Consider if $(u, v) \in \overline{G}$, then $(u, v) \notin G$, which also implies either u or v is not in S and either u or v is in V - S. Therefore, (u, v) is covered.

 $\begin{array}{l} \Leftarrow) \text{ Let } R \subseteq V \text{ be a vertex cover of } \overline{G} \Rightarrow V - R \text{ is a clique of } G. \\ \Rightarrow \text{ If } (u,v) \in \overline{G}, \text{ then } u \text{ or } v \text{ is in } \text{R}. \\ \Rightarrow \text{ if } u \notin R \text{ and } v \notin R \text{ then } (u,v) \notin \overline{G}. \\ \Rightarrow \text{ if } u \in V - R \text{ and } v \in V - R \text{ then } (u,v) \in G. \end{array}$

3 3-SAT is NP-Complete

Theorem: $3 - SAT \in NPC$ $3 - SAT = \{ \phi \mid each \ clause \ has \ at \ most \ 3 \ literals \ and \ \phi \ is \ in \ SAT \}$



idea of transform: $(a_1 \lor a_2 ... \lor a_k) \Rightarrow (a_1 \lor a_2 \lor y_1)(\overline{y_1} \lor a_3 \lor y_2)...(\overline{y_{k-3}} \lor a_{k-1} \lor a_k)$ Claim: ϕ is satisfiable $\iff \phi'$ is satisfiable.

Proof:

 \Rightarrow) If ϕ is satisfiable, then there is a truth assignment so that each clause has a true literal. Let a_i be a true literal for clause $C = (a_1 \lor a_2 \lor \cdots \lor a_k)$, then set $y_1, y_2, \ldots, y_{i-2}$ to true and $y_{i-1}, y_i, \ldots, y_{k-3}$ to false. In this way, every one of the 3-SAT clauses derived from C is satisfied.

 \Leftarrow)If ϕ' is satisfiable, then every one of the 3-SAT clauses derived from $C = (a_1 \lor a_2 \lor \cdots \lor a_k)$ has a true literal. At least one of the a_i 's must be true. Otherwise, if all a_i 's are false, y_1 must be true (to satisfy the first 3-SAT clause) which implies y_2 must be true (to satisfy the second 3-SAT clause) which implies, eventually, that y_{k-3} must be true which implies that the last 3-SAT clause is false: a contradiction. Since at least one of the a_i 's is true, the clause C is satisfied.