CS420+500: Advanced Algorithm Design and Analysis

Lectures: Mar 8 + Mar 10, 2017
Prof. Will Evans
Scribe: Tianri Gu

In this lecture we:

- CLIQUE is NP-Hard
- VERTEX COVER is NP-Complete
- 3-SAT is NP-Complete

1 CLIQUE \in NP-Hard

Key idea: reduce SAT to CLIQUE

Steps:

Transform a formula ϕ into a graph G and integer k so that

1. G contains a clique of size $k \Longleftrightarrow \phi$ is satisfiable.
2. Transformation Is in polynomial time.

Transformation Steps:

1. Create a vertex for every literal in every clause.
2. Connect a vertex from $i t h$ clause to vertex from $j t h$ clause $(i \neq j)$ unless they are negation of each other.
3. Let $k=\#$ clause in ϕ

Example:

$\phi=\left(x_{1}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4}\right)$ $k=4$

Claim: $\phi \in S A T$ iff G has k-clique.

Proof:

$\Rightarrow)$ If ϕ has a truth assignment then every clause has at least one true literal.
If we choose the vertex corresponding to one true literal from each clause, these vertices form a clique of size $k=$ the number of clauses.
$\Leftarrow)$ If G has a k-clique then exactly one vertex from each clause is in the clique.
If we assign each literal corresponding to these vertices the value true, then every clause has a true literal and ϕ is satisfiable.

2 VERTEX COVER is NP-Complete

Vertex Cover Problem:

Given undirected graph $G=(V, E)$ and integer k. Does G have a vertex cover of size k.

Vertex Cover:

Is a set vertices $S \subseteq V$ such that all edges in G have at least one end point in S.

$$
V C=\{\langle G, k\rangle \mid G \text { has a Vertex Cover of size } k\}
$$

Theorem: $V C \in N P C$

Proof:

1. $V C \in N P$: certificate(witness) a $V C S \subseteq V$ of size k. The verifier checks that $|S|=k$ and check for each $(u, v) \in E$ that $u \in S$ or $v \in S$.
2. CLIQUE $\longrightarrow V C$

\bar{G} : the complement of $G: \bar{G}=(V, \bar{E})$ where $\bar{E}=\{(u, v) \mid(u, v) \notin E\}$.

Claim: G has a clique of size $\mathrm{k} \Longleftrightarrow G^{\prime}=\bar{G}$ has $V C$ of size $k^{\prime}=|V|-k$
Proof:
$\Rightarrow)$ if G has a clique $S \in V$, then $V-S$ is a $V C$ for \bar{G}. Consider if $(u, v) \in \bar{G}$, then $(u, v) \notin G$, which also implies either u or v is not in S and either u or v is in $V-S$. Therefore, (u, v) is covered.
$\Leftarrow)$ Let $R \subseteq V$ be a vertex cover of $\bar{G} \Rightarrow V-R$ is a clique of G.
\Rightarrow If $(u, v) \in \bar{G}$, then u or v is in R .
\Rightarrow if $u \notin R$ and $v \notin R$ then $(u, v) \notin \bar{G}$.
\Rightarrow if $u \in V-R$ and $v \in V-R$ then $(u, v) \in G$.

3 3-SAT is NP-Complete

Theorem: $3-S A T \in N P C$
$3-S A T=\{\phi \mid$ each clause has at most 3 literals and ϕ is in $S A T\}$

idea of transform: $\left(a_{1} \vee a_{2} \ldots \vee a_{k}\right) \Rightarrow\left(a_{1} \vee a_{2} \vee y_{1}\right)\left(\overline{y_{1}} \vee a_{3} \vee y_{2}\right) \ldots\left(\overline{y_{k-3}} \vee a_{k-1} \vee a_{k}\right)$
Claim: ϕ is satisfiable $\Longleftrightarrow \phi^{\prime}$ is satisfiable.

Proof:

$\Rightarrow)$ If ϕ is satisfiable, then there is a truth assignment so that each clause has a true literal. Let a_{i} be a true literal for clause $C=\left(a_{1} \vee a_{2} \vee \cdots \vee a_{k}\right)$, then set $y_{1}, y_{2}, \ldots, y_{i-2}$ to true and $y_{i-1}, y_{i}, \ldots, y_{k-3}$ to false. In this way, every one of the 3-SAT clauses derived from C is satisfied.
$\Leftarrow)$ If ϕ^{\prime} is satisfiable, then every one of the 3-SAT clauses derived from $C=\left(a_{1} \vee a_{2} \vee \cdots \vee a_{k}\right)$ has a true literal. At least one of the a_{i} 's must be true. Otherwise, if all a_{i} 's are false, y_{1} must be true (to satisfy the first 3 -SAT clause) which implies y_{2} must be true (to satisfy the second 3 -SAT clause) which implies, eventually, that y_{k-3} must be true which implies that the last 3 -SAT clause is false: a contradiction. Since at least one of the a_{i} 's is true, the clause C is satisfied.

