
CS420+500: Advanced Algorithm Design and Analysis

Lectures: March 6 + 8, 2017

Prof. Will Evans Scribe: Amin Aghaee

In this lecture we:

• Discussed complexity classes ;

• defined NP, NP-Hard;

• NP-Completeness and reduction.

1 NP-Completeness

Firstly, let’s start with some definitions:

Definition 1. Decision Problem: algorithmic questions that can be answered by YES or NO.

Definition 2. P: or Polynomial set is set of decision problems decidable in polynomial time. A deci-
sion problem L is in P if there exists a polynomial time algorithm A such that L = {x|A accepts x}.
(Note that A is a polynomial time algorithm if there exists a positive integer k such that for all
inputs x, A halts on input x and either accepts or rejects x in time O(|x|k).)

Definition 3. NP: is set of decision problems that have polynomial time ”verifications”.

Definition 4. Verification: An algorithm V is a polynomial time verifier for a problem L if for
every input x ∈ L, there exists a witness w such that V on input (x,w) accepts in time polynomial
in |x|, and if x 6∈ L, then for all witnesses w, V on input (x,w) rejects in time polynomial in |x|.

Originally, NP comes from non-deterministic polynomial or more precisely from non-deterministic
turing machines. Every problem in P is also in NP since the algorithm A for L acts as a verifier
that doesn’t require a witness.

Figure 1: Complexity classes

1

1.1 SAT problem

SAT is the set of Boolean formulas in CNF 1 that are satisfiable, that is, there is a truth assignment
to the variables in the formula so that the formula evaluates to True.

Theorem 5. SAT ∈ NP

Proof: The string w that specifies the truth assignment is a good witness for φ. Verifier V needs
to only check that w satisfies φ (can be done in polynomial time).

The class Co-NP is the set of decision problems L whose complement is in the class NP. The
complement of a decision problem L is the set {x|x 6∈ L}.

1.2 CLIQUE problem

CLIQUE = {< G, k > |G is a graph with clique of size k}. Clique of size k has k vertices that all
are adjacent to each other.

Theorem 6. CLIQUE ∈ NP

witness w for < G, k > is a set of k vertices of G that form a clique. Verifier can check in polynomial
time in | < G, k > | that w is a clique or not.

Definition 7. NP-Hard: set of problems L s.t. if L could be solved in polynomial time, then all
other problems in NP could also be solved in polynomial time. Formally, L ∈ NP −Hard means
if L ∈ P then L

′ ∈ P for all L
′ ∈ NP .

Definition 8. NP-Complete: A decision problem L is NP-Complete if:

1. L ∈ NP

2. L ∈ NP −Hard

Theorem 9 (Cook-Levin 1971). SAT is NP-complete.

We are not going to prove theorem 9 in class. NP-Complete contains hardest problems in NP.
CLIQUE is an NP-Complete (Yes/No) problem but MAX-CLIQUE is NP-Hard (find maximum
size clique in a graph G). Usually, when we convert Yes/No problems to finding problems, they get
harder.

2 Reduction to SAT

We know that SAT is NP-Complete problem. It is difficult to prove a problem is NP-hard in the
same way that Cook did. However, since we know SAT is NP-hard, we can show that a problem
L is NP-hard by showing that a polynomial-time algorithm for L can be used to solve SAT in
polynomial time. In other words, by showing how to reduce SAT to L. It is important to do this
reduction in a right order.

1Conjunctive normal form such as (x ∨ y) ∧ (x ∨ z)

2

Theorem 10. CLIQUE ∈ NP-Hard.
As a proof, we are going to reduce SAT problem to CLIQUE. So we want to transform a formula
φ into a graph < G, k > so that:

1. G contains a clique of size k ⇔ φ is satisfiable

2. transformation should take polynomial time

So we do the following three steps:

• Create a vertex for every literal in every clause

• Connect a vertex from i’th clause to j’th clause (i 6= j) unless they are negative of each other
(x, x)

• Let k be number of clauses in φ

As a example, let say we have φ = (x1)∧ (x1∨x2)∧ (x1∨x3)∧ (x2∨x3∨x4). Here is a transformed
graph:

We claim that φ ∈ SAT iff G has k-clique.
(⇒) If φ has a truth assignment, then every clause has at least one true literal. Thus, we can
choose one from each clause of size ”k”.
(⇐) If G has a clique ”k” then exactly one vertex from each clause is in φ. So we can assign one
to each literal vertex and as a result, φ is satisfiable.

3

