CS420+500: Advanced Algorithm Design and Analysis

Lectures: March $6+8,2017$
Prof. Will Evans
Scribe: Amin Aghaee

In this lecture we:

- Discussed complexity classes ;
- defined NP, NP-Hard;
- NP-Completeness and reduction.

1 NP-Completeness

Firstly, let's start with some definitions:
Definition 1. Decision Problem: algorithmic questions that can be answered by YES or NO.
Definition 2. P: or Polynomial set is set of decision problems decidable in polynomial time. A decision problem L is in P if there exists a polynomial time algorithm A such that $L=\{x \mid A$ accepts $x\}$. (Note that A is a polynomial time algorithm if there exists a positive integer k such that for all inputs x, A halts on input x and either accepts or rejects x in time $O\left(|x|^{k}\right)$.)

Definition 3. NP: is set of decision problems that have polynomial time "verifications".
Definition 4. Verification: An algorithm V is a polynomial time verifier for a problem L if for every input $x \in L$, there exists a witness w such that V on input (x, w) accepts in time polynomial in $|x|$, and if $x \notin L$, then for all witnesses w, V on input (x, w) rejects in time polynomial in $|x|$.

Originally, NP comes from non-deterministic polynomial or more precisely from non-deterministic turing machines. Every problem in P is also in $N P$ since the algorithm A for L acts as a verifier that doesn't require a witness.

Figure 1: Complexity classes

1.1 SAT problem

SAT is the set of Boolean formulas in CNF ${ }^{1}$ that are satisfiable, that is, there is a truth assignment to the variables in the formula so that the formula evaluates to True.

Theorem 5. $S A T \in N P$
Proof: The string w that specifies the truth assignment is a good witness for ϕ. Verifier V needs to only check that w satisfies ϕ (can be done in polynomial time).

The class Co-NP is the set of decision problems L whose complement is in the class NP. The complement of a decision problem L is the set $\{x \mid x \notin L\}$.

1.2 CLIQUE problem

CLIQUE $=\{\langle G, k\rangle \mid G$ is a graph with clique of size $k\}$. Clique of size k has k vertices that all are adjacent to each other.
Theorem 6. CLIQUE $\in N P$
witness w for $<G, k>$ is a set of k vertices of G that form a clique. Verifier can check in polynomial time in $|\langle G, k\rangle|$ that w is a clique or not.
Definition 7. NP-Hard: set of problems L s.t. if L could be solved in polynomial time, then all other problems in NP could also be solved in polynomial time. Formally, $L \in N P$ - Hard means if $L \in P$ then $L^{\prime} \in P$ for all $L^{\prime} \in N P$.

Definition 8. NP-Complete: A decision problem L is NP-Complete if:

1. $L \in N P$
2. $L \in N P-H a r d$

Theorem 9 (Cook-Levin 1971). SAT is NP-complete.
We are not going to prove theorem 9 in class. NP-Complete contains hardest problems in NP. CLIQUE is an NP-Complete (Yes/No) problem but MAX-CLIQUE is NP-Hard (find maximum size clique in a graph G). Usually, when we convert Yes/No problems to finding problems, they get harder.

2 Reduction to SAT

We know that SAT is NP-Complete problem. It is difficult to prove a problem is NP-hard in the same way that Cook did. However, since we know SAT is NP-hard, we can show that a problem L is NP-hard by showing that a polynomial-time algorithm for L can be used to solve SAT in polynomial time. In other words, by showing how to reduce SAT to L. It is important to do this reduction in a right order.

[^0]Theorem 10. CLIQUE $\in N P$-Hard.
As a proof, we are going to reduce SAT problem to CLIQUE. So we want to transform a formula ϕ into a graph $<G, k>$ so that:

1. G contains a clique of size $k \Leftrightarrow \phi$ is satisfiable
2. transformation should take polynomial time

So we do the following three steps:

- Create a vertex for every literal in every clause
- Connect a vertex from i 'th clause to j 'th clause $(i \neq j)$ unless they are negative of each other (x, \bar{x})
- Let k be number of clauses in ϕ

As a example, let say we have $\phi=\left(x_{1}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4}\right)$. Here is a transformed graph:

We claim that $\phi \in$ SAT iff G has k-clique.
(\Rightarrow) If ϕ has a truth assignment, then every clause has at least one true literal. Thus, we can choose one from each clause of size " k ".
(\Leftarrow) If G has a clique " $\mathrm{k} "$ then exactly one vertex from each clause is in ϕ. So we can assign one to each literal vertex and as a result, ϕ is satisfiable.

[^0]: ${ }^{1}$ Conjunctive normal form such as $(x \vee y) \wedge(\bar{x} \vee z)$

