$$
\text { CS420+500: Advanced Algorithm Design and Analysis }
$$

Lectures: March $01+03,2017$
Prof. Will Evans
Scribe: ENRIQUE ROSALES

In this lecture we:

- Discussed an efficient algorithm to find the Longest Increasing Subsequence (LIS);
- And how to solve the Longest Common Subsequence (LCS) using LIS;

Handouts (posted on webpage):

- Group-work exercises (Wednesday March 1)

Reading: ASSIGNED READING(S).

## 1 Dynamic Programming

### 1.1 Longest Increasing Subsequence (LIS)

Having $R=\{5,3,4,9,6,2,1,8\}$ the Longest Increasing Subsequence is: $\{3,4,6,8\}$

$$
R=\{5,(3),(4), 9,(6), 2,1,(8)\}
$$

Using Longest Common Subsequence ( $L C S$ ):

1. Sort $R \mathcal{O}(n \log n)$
2. Report $L C S(\underbrace{R}_{\mathrm{n}}, \underbrace{\operatorname{sort}(R)}_{\mathrm{n}}) \mathcal{O}\left(n^{2}\right)$

Faster solution to LIS
When finding $L I S$ of $R\{1 \ldots k\}$ what information about $R\{1 \ldots k-1\}$ would be useful?
A) $\operatorname{LIS} R\{1 \ldots k-1\}$

Not enough because $R\{\overbrace{5,3,4,9,6,2,1}^{349}, 8\}$
$\uparrow$
B) Best $\operatorname{LIS} R\{1 \ldots k-1\}$ (one with smallest last value)

Not enough because $R\{1,2,5,3,4\}$
C) Best Increasing Subsequence ( $B I S$ ) of lengths $\{1,2,3 \ldots j\}$

Example step by step:

1. $R\{8,3,4,9,6,2,1,5,7,6\}$
$\uparrow$
$B I S[1]=\{1\}$
$B I S[2]=\{3,4\}$
$B I S[3]=\{3,4,6\}$
$B I S[4]=\{\emptyset\}$
2. $R\{8,3,4,9,6,2,1,5,7,6\}$
$\uparrow$
$B I S[1]=\{1\}$
$B I S[2]=\{3,4\}$
$B I S[3]=\{3,4,5\}$
$B I S[4]=\{\emptyset\}$
3. $R\{8,3,4,9,6,2,1,5,7,6\}$
$\uparrow$
$B I S[1]=\{1\}$
$B I S[2]=\{3,4\}$
$B I S[3]=\{3,4,5\}$
$B I S[4]=\{3,4,5,7\}$

This is probably the solution but, how can we compute this in less time?

The solution is to avoid writing everything let's see an example step by step:

1. $R\{8,3,4,9,6,2,1,5,7,6\}$
$B I S[1]=\{8\}$
$B I S[2]=\{\emptyset\}$
$B I S[3]=\{\emptyset\}$
$B I S[4]=\{\emptyset\}$
2. $R\{8,3,4,9,6,2,1,5,7,6\}$
$\uparrow$
$B I S[1]=\{\varnothing,(3)\}$
$B I S[2]=\{\emptyset\}$
$B I S[3]=\{\emptyset\}$
$B I S[4]=\{\emptyset\}$
3. $R\{8,3,4,9,6,2,1,5,7,6\}$
$B I S[1]=\{8,(3)\}$
$B I S[2]=\{(4)\}$
$B I S[3]=\{\emptyset\}$
$B I S[4]=\{\emptyset\}$
4. $R\{8,3,4,9,6,2,1,5,7,6\}$
$\uparrow$
$B I S[1]=\{\phi,(3)\}$
$B I S[2]=\{(4)\}$
$B I S[3]=\{\stackrel{\uparrow}{9}\}$
$B I S[4]=\{\emptyset\}$
5. $R\{8,3,4,9,6,2,1,5,7,6\}$

$B I S[1]=\{8,(3)\}$
$\left.B I S[2]=\stackrel{\uparrow}{\uparrow}{ }_{\uparrow}^{4}\right\}$
$B I S[3]=\{9,6\}$
$B I S[4]=\{\emptyset\}$
6. $R\{8,3,4,9,6,2,1,5,7,6\}$

$$
\begin{aligned}
& \uparrow \\
& B I S[1]=\{8,(3), 2\} \\
& B I S[2]=\{(4)\} \\
& B I S[3]=\{9,(6)\} \\
& B I S[4]=\{\emptyset\}
\end{aligned}
$$

7. $R\{8,3,4,9,6,2,1,5,7,6\}$
$\uparrow$
$B I S[1]=\underset{\boldsymbol{\tau}}{\{8,(3), 2,1\}}$
$B I S[2]=\{4)\}$
$B I S[3]=\{9$, (6) $\}$
$B I S[4]=\{\emptyset\}$
8. $R\{8,3,4,9,6,2,1,5,7,6\}$ $\uparrow$
$B I S[1]=\{8,(3), 2,1\}$
$B I S[2]=\{(4)\}$
$B I S[3]=\{9,6$, (5) $\}$
$B I S[4]=\{\emptyset\}$
9. $R\{8,3,4,9,6,2,1,5,7,6\}$
$B I S[1]=\{\not \subset,(3), 2,1\}$
$B I S[2]=\{(4)\}$
$B I S[3]=\{9,6,(5)\}$
$B I S[4]=\{(7)\}$
10. $R\{8,3,4,9,6,2,1,5,7,6\}$

$$
\begin{aligned}
& B I S[1]=\overbrace{\{8, \cdot 3,2,1\}}^{\boldsymbol{\tau}}\} \\
& \text { decreasing order } \\
& B I S[2]=\{\overbrace{\nearrow}\} \\
& B I S[3]=\{9,6,(5)\} \\
& B I S[4]=\{7,(6)\}
\end{aligned}
$$

To add the next number in $R$ perform binary search on the last values in the $B I S$ s and put the next number in sorted order, pointing to the end value of the previous BIS (black arrows) having a running time of $\mathcal{O}(n \log n)$

### 1.2 Use $L I S$ to solve $L C S$

To find a sequence of index pairs of matches so that sequence increases in both coordinates.

Example:

$$
\begin{array}{r}
\{A,(\mathrm{~B},(\mathrm{C}), B,(\mathrm{~A}),(\mathrm{C},(\mathrm{C}), B\} \\
\{(\mathrm{B},(\mathrm{C}, D,(\mathrm{~A}), B,(\mathrm{C},(\mathrm{C})\}
\end{array}
$$

We can see the relation between the sequence in table 1

Table 1: $L C S$ pairs

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | B | A | C | C | B |  |
| 1 | B |  | X |  | X |  |  |  | X |
| 2 | C |  |  | X |  |  | X | X |  |
| 3 | D |  |  |  |  |  |  |  |  |
| 4 | A | X |  |  |  | X |  |  |  |
| 5 | B |  | X |  | X |  |  |  | X |
| 6 | C |  |  | X |  |  | X | X |  |
| 7 | C |  |  | X |  |  | X | X |  |

In this case, we can see that the coordinates of the $L C S$ pairs have increasing order in both coordinates.

$$
\{\overbrace{(1,2),(2,3),(4,5),(6,6),(7,7)}^{\text {increasing order }}\}
$$

It is easy to obtain the matching pairs, and to list them by its row and column coordinates:

$$
\begin{aligned}
\text { Rows } & =\{1,1,1,2,2,2 \ldots\} \\
\text { Columns } & =\{2,4,8,3,6,7 \ldots\}
\end{aligned}
$$

The trick is to invert the column numbers that have the same value in row.

$$
\begin{aligned}
\text { Rows } & =\{1,1,1,2,2,2 \ldots\} \\
\text { Columns } & =\{\underbrace{8,4,2}_{\text {inverted }}, \underbrace{7,6,3}_{\text {inverted }} \ldots\}
\end{aligned}
$$

List coordinates of matching characters in order by row index and, within one row, in reverse order by column number, then run $L I S$ on the sequence of columns order.

Another way to see this problem is to determine a value of 1 to vertical and horizontal movements, and a value of 0 to diagonal movements like in a chessboard, having this, the problem can be seen as the shortest path between the upper left corner and the lower right corner as seen in table 2 .

Table 2: LCS as Shortest Path

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | B | A | C | C | B |
| 1 | B |  | X |  | X |  |  |  | X |
| 2 | C |  |  | (X) |  |  | X | X |  |
| 3 | D |  |  |  |  |  |  |  |  |
| 4 | A | X |  |  |  | X |  |  |  |
| 5 | B |  | X |  | X |  |  |  | X |
| 6 | C |  |  | X |  |  | (X) | X |  |
| 7 | C |  |  | X |  |  | X | (X) |  |

