
CS420+500: Advanced Algorithm Design and Analysis

Lectures: Feb 27 + Mar 1 + Mar 3, 2017

Prof. Will Evans Scribe: Adrian She

In this lecture we:

• Summarized how linear programs can be used to model zero-sum games;

• Motivated/reviewed dynamic programming algorithms using the longest common subsequence
problem;

• Developed a fast algorithm for longest increasing subsequence using a variant of dynamic
programming.

1 Zero Sum Games: Summary

Consider a game with two players Row and Col with payoff matrix:

[
3 −1
−2 1

]
Our goal is to find a mixed strategy (probability distribution on possible plays) for Row which
maximizes their expected winnings no matter what strategy Col chooses to execute. Let z denote
the winnings of Row player using strategy (x1, x2). Then the solution to the following linear
program describes the optimal strategy for Row, since based on any strategy Row chooses, Col
may choose a pure strategy which maximize Row’s winnings:

max z subject to

z ≤ 3x1 − 2x2 (Col chooses pure strategy 1)

z ≤ −x1 + x2 (Col chooses pure strategy 2)

x1 + x2 = 1

x1, x2 ≥ 0

(1)

On the other hand, Col wants to find a mixed strategy (y1, y2) which minimizes their loss, no
matter what pure strategy Row chooses. The solution to the following linear program describes
the optimal strategy to minimize Col’s losses:

minw subject to

w ≥ 3y1 − y2 (Row chooses pure strategy 1)

w ≥ −2y1 + y2 (Row chooses pure strategy 2)

y1 + y2 = 1

y1, y2 ≥ 0

(2)

1

Note now that linear programs (1) and (2) are dual to each other!

Row Col

max 0x1 + 0x2 + 1x3

− 3x1 + 2x2 + x3 ≤ 0

x1 − x2 + x3 ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

min 0y1 + 0y2 + 1y3

− 3y1 + y2 + y3 ≥ 0

2y1 − y2 + y3 ≥ 0

y1 + y2 = 1

y1, y2 ≥ 0

Hence, they have a common optimum v by the linear programming duality theorem. The solutions
are (x1, x2) = (37 ,

4
7) and (y1, y2) = (27 ,

5
7) respectively, which achieve optimum (expected winnings)

v = 1
7 . This point is known as the Nash equilibrium for the game, as neither player can improve

their expected winnings (or losses) as a result of changing their strategy at this point.

2 Dynamic Programming and Friends

We now switch gears to dynamic programming.

2.1 Longest Common Subsequence

Problem Given two character strings X of m characters, and string Y of n characters, what is a
longest common subsequence of X and Y ? Denote a longest common subsequence of X,Y
by LCS(X,Y).

This is the longest non-crossing matching in a graph B whose nodes are the characters of X,Y
respectively, and where an edge is drawn between a character of X and a character of Y if they are
the same.

Definition 1. A subsequence of a character string (array) X is X[i1]X[i2]...X[ik] where i1 <
i2 < ... < ik

For instance if X = ABANDON and Y = BADNODNO, then LCS(X,Y) is one of BADON, BANDO,
or BANON.

We may be tempted to use a greedy strategy by directly aligning X,Y and collecting all common
characters between X,Y as the longest common subsequence. However, this method does not work.
Consider the strings X = axxbxx and Y = bxxaxxbxx:

axxbxx

bxxaxxbxx

The longest subsequence found through direct alignment is xxxx, but the longest common subse-
quence is actually axxbxx. By considering strings X = (axxbxx)n and Y = bxx(axxbxx)n, the
length of the longest subsequence found using direct alignment may be much shorter than the
actual longest common subsequence as n increases.

2

Hence, we will attempt to use dynamic programming to solve this problem. The first step is to
formulate recursive subproblems. To do this, we consider the relationship between X[m] and Y[n]:

• If X[m] = Y[n], we will match them and add it to LCS(X[1... m-1], Y[1...n-1]).

• If not, we consider the longer of LCS(X[1...m-1], Y[1..,n]) and LCS(X[1...m], Y[1...n-1]) as
our LCS up to that point.

Hence, we may mn subproblems of form LCS(X[1...i], Y[1...j]) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. To
keep track of the solution of these subproblems, we use a table F , where the entry F [i, j] denotes
the length of LCS(X[1...i], Y[1...j]). We compute F [i, j] by:

F [i, j] =


F [i− 1, j − 1] + 1 X[i] = Y [j]

max(F [i− 1, j], F [i, j − 1]) X[i] 6= Y [j]

0 i = 0

0 j = 0

(3)

Note that F [i, j] where i = 0 or j = 0 are the base cases. Using the above recurrence relation
(3), the dynamic programming algorithm for longest common subsequence is then to initialize a
m × n table F , compute each entry of F using equation (3), then backtrack through the table to
reconstruct the longest common subsequence.

∅ A B A N D O N
∅ 0 0 0 0 0 0 0 0
B 0 0 1 1 1 1 1 1
A 0 0 1 2 2 2 2 2
D 0 0 1 2 2 3 3 3
N 0 0 1 2 3 3 3 4
O 0 0 1 2 3 3 4 4
D 0 0 1 2 3 4 4 4
N 0 0 1 2 3 4 4 5
O 0 0 1 2 3 4 5 5

Table 1: Dynamic Programming Table for Example Strings

It was suggested that only two rows of the table need to be kept (instead of all rows) in order to save
space. Furthermore, the algorithm takes O(mn) time to compute the longest common subsequence
of two strings.

Finally we note that longest common subsequence may be used the solve edit distance.

Edit Distance Given two strings A of n characters and B of m characters, what is the fewest
number of insertions and deletions needed to transform A into B?

This is because the edit distance between A,B is n + m− 2l where l is the length of LCS(A,B).

3

2.2 Longest Increasing Subsequence

Now we consider the longest increasing subsequence problem.

Longest Increasing Subsequence Given a sequence of numbers R of length n, find the longest
subsequence in R which is increasing.

For instance, if R is the sequence 5,3,4,9,6,2,1,8, then the increasing subsequence would be 3,4,6,8.

There is a reduction from longest increasing subsequence to longest common subsequence. Sort R
and call the sorted list Rsorted. Then LCS(R, Rsorted) is the longest increasing subsequence in R.
This takes O(n2) time.

We may provide a faster solution, motivated by “scanning” the array for all possible subsequence,
which may be an initial attempt at solving this problem.

When finding the longest increasing subsequence of R[1...k], what do we want to keep about the
array R[1...k-1]?

• We may want to keep the “best” or “most extensible” subsequence of R[1...k-1] as we scan the
kth element of the array, namely the longest increasing sequence with smallest final element.
However, consider the array R = [1 2 10 9 7 8 3 4 5]. The most extensible sequence up to the
6th element would be S = [1 2 7 8], although we cannot extend S as we scan the rest of the
array. At the same time, S is not the longest increasing subsequence since S’ = [1 2 3 4 5] is
longer.

• We will then keep the family of best increasing subsequences of lengths 1,2,3..,j. Call them
BIS[1], ..., BIS[j] respectively.

For instance of R = [8 3 4 9 6 2 1 5 7 6], then the family of best increasing subsequences are as
follows:

After seeing R[7]=1 R[8] = 5 R[9] = 7
BIS[1] 1 1 1
BIS[2] 3,4 3,4 3,4
BIS[3] 3,4,6 3,4,5 3,4,5
BIS[4] does not exist does not exist 3,4,5,7

Updating the family of best increasing subsequences if the whole subsequence is stored may take
O(n) time, however, we can do the update in logarithmic time. To do this, we consider BIS[i] as the
list of end numbers of the best increasing subsequences of length i, as the numbers are encountered
in a left to right sweep of the input. There is a pointer from an element x in BIS[i] to y in BIS[i-1]
if x is part of a sequence which extends y. For instance, the following would be the tree generated
on the sample input R.

Storing the last elements instead of the full sequence enables adding the next number of R in
O(log n) time. The last numbers of each BIS[i] are in sorted order, so we may perform binary
search on i to determine whether to put the next number, and we point it to the end value of the
previous BIS. This yields a O(n log n) time algorithm for longest increasing subsequence.

4

BIS[1]

BIS[2]

BIS[3]

BIS[4]

8 3 2 1

4

9 6 5

7 6

Figure 1: Collection of BIS[i] when algorithm finishes processing R

2.2.1 Reduction to LCS

Now, we can use longest increasing subsequence to create an algorithm for longest common subse-
quence.

We start with the two strings X,Y and build a table, noting the positions in the strings whose
characters match.

A B C B A C C B
B x x x
C x x x
D
A x x
B x x x
C x x x
C x x x

Table 2: Sample table for comparison to two strings

Finding a longest common subsequence of the two strings then means finding a sequence of index
pairs of matching characters, for which the sequence increases in both coordinates.

We may write the matching index pairs of the example as follows:

r 1 1 1 2 2 2 . . .
c 2 4 8 3 6 7 . . .

We are now faced with a problem, since running longest increasing subsequence on c may return
multiple matches per row (and we may not match a single character in X with multiple characters
in Y). Reverse the order of coordinates per row in c resolves this problem, as it then enforces
picking at most one character in c per row in r.

r 1 1 1 2 2 2 . . .
c 8 4 2 7 6 3 . . .

Running longest increasing subsequence on the reversed sequence of column numbers then provides
the longest common subsequence of X,Y . This takes O(n2 log n) time, for there may be O(n2)
matching pairs, although if the number of matching pairs is small, then this may be faster.

5

Recall that longest common subsequence can be used to solve the edit distance problem. The above
approach of building a table of matching characters can be used to solve the edit distance problem
as well (Myers 1986). We construct a graph from the table of matching characters by connecting
(i, j) with (i, j + 1), (i− 1, j) with weight 1, since we need to make an insertion or deletion in this
case. Next, we connect (i, j), (i − 1, j − 1) with weight 0 iff the ith character of X and the jth

character of Y match. These edge weights are based on our discussion of the recurrence relation
for longest common subsequence.

Then the edit distance of X,Y corresponds to the shortest path between (0, 0) and (n,m) where
n = |X|,m = |Y | in the LCS graph. We may run then run Dijkstra’s algorithm to compute this
path, which will have length D. At this point, Dijkstra’s algorithm will have explored only those
vertices (i, j) that are at most distance D from the origin. Since a horizontal or a vertical edge has
length one, the coordinates must satisfy |i− j| ≤ D. In an n×m array, there are D min{n,m} such
vertices. Furthermore, Djikstra’s algorithm runs in time O(|V |+ |E|) since the edge weights of the
LCS graph are bounded. Hence, Myers’ algorithm run time in time O(min{n,m}D) since the edge
weights in the LCS graph are bounded each vertex is connected to at most two other vertices.

6

