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Open Pit Mining - A Network Flow Example 

Continuing from last class, we were working with a directed acyclic graph as follows: 

 

Then add a source vertex s, and sink vertex t. For each vertex v with negative weight w(v), place 
an edge from s to v with weight equal |w(v)|. For each vertex u with positive weight w(u), place 
an edge from u to t with weight equal |w(u)|. This allows us to find the max profit. 

 

In terms of the minimal cut, the cut dividing the graph into the source and sink sides is: 
( , ) = ({ , , , }, { , , , , , , }) 

The overall profit works out to be +1, and the sum of the positive weights on the edges going to 
t are ∑ ( ) = 9∈ , ( ) . 

Now: 

maximize profit = ∑ ( )∈ , ( )  + ∑ ( )∈ , ( )  otherwise written as: 

minimize -profit = − ∑ ( )∈ , ( )  + − ∑ ( )∈ , ( )  

The capacity of the cut associated with the initial set , where = ∪ { } and = −  is: 

cap(S,T) = ∑ ( ) + ∉ , ( ) − ∑ ( )∈ , ( )  

and thus: ∑ ( )∈ , ( )  - profit = ∑ ( ) + ∉ , ( ) − ∑ ( )∈ , ( )  



 

Note that the ∑ ( )∈ , ( )  term is independent of the set U, and all the terms in this 
summation are positive values. Since this term is independent of U, minimizing the capacity 
over the various possible cuts (or over the possible initial sets) is equivalent to maximizing 
profit. 

Linear Programming Duality 

Given the following linear program: 

max +  6    

such that: 

                        ≤   200 

                        ≤   300 

           +      ≤  400 

                ,    ≥  0 

 ( , ) = (100, 300)  is the optimal solution to the LP. 

The value of the optimal solution is 1900. 

Multiplying the 1st inequality by 0, the 2nd by 5, and the third by 1, and summing them, gives a 
bound on the value of the optimal solution as follows: 

 0 ∗                      ≤   0 ∗ 200 

                     5 ∗  ≤   5 ∗ 300 

 1 ∗   +   1 ∗   ≤   1 ∗ 400 

and summing them gives: 

   +   6   ≤   1900  

as required. 

The multipliers above are the optimal solution to the dual linear program. These  multipliers 
must be non-negative. Thus the optimal solution to the dual is  ( , , ) = (0, 5, 1). 

 



 

We can write  ( +  )   +   ( + )   ≤  200 +  300 +  400  

Now    +   6  ≤  200 +  300 +  400  as long as ( +  )  ≥  1 and ( +  ) ≥  6. 

We can now write the dual LP as follows: 

min  200 +  300 +  400   

such that: 

                +                              ≥   1 

                                   +           ≥   6 

                                          , ,  ≥  0 

Duality Theorem 
If an LP has a bounded optimum, then so does its dual, and the optimum values are the same. 
_____________ 

Let  ⊆ {1, … , } and ⊆ {1, … , } 

Then the Primal LP and the Dual LP will have the following form: 

Primal: 

max +  … +     

such that: 

         +  … +     ≤       ∈   

         +  … +     =       ∉   

                                             ≥  0      ∈   

Dual: 

min +  … +     

such that: 

         +  … +     ≥       ∈   

         +  … +     =       ∉   

                                               ≥  0      ∈    



 

Two Player Zero-Sum Games 

One player's gain is the other's loss in this type of game. 

Consider the game Rock Paper Scissors with the following payoff matrix: 

                              Column 

 

Row 

 

The amount shown is the amount the Row player receives, or the column player pays. 

For example, if the Row player plays "r" every time, then the column player can play "p" and 
win every time. 

We introduce the concept of a mixed strategy to solve this problem. A mixed strategy is a 
probability distribution on the actions  ( , , ) for the Row Player and  ( , , ) for the 
Column player, in the case of the game just mentioned. 

Row player's strategy:  ( , , ) 

Column player's strategy:  ( , , ) 

Expected Payoff is ∑ Pr         

=  ∑  where  corresponds to the ij entry of the Payoff Matrix,  corresponds to the 
ith entry of the Row player's strategy, and  corresponds to the jth entry of the Column 
player's strategy. 

The Row player wants to maximize the expected payoff, where as the Column player wants to 
minimize the expected payoff. 

 r p s 

r 0 -1 1 

p 1 0 -1 

s -1 1 0 



 

In the case of Rock Paper Scissors, if the Row player plays the strategy ( , , ), the expected 

payoff is 0 for the Row player. Similarly, if the Column player plays the same strategy, the 
expected payoff for them is also 0. It turns out that both the Row and Column players cannot 
play a different strategy and hope for a better expected payoff. This game is an example of a 
fair game. 

Here is another example of a 2 player zero sum game: 

                    Column 

Row 

 

 

If the Row player plays ( , ) then: 

        If the column player plays (1,0) then column pays . Otherwise if column player plays 

        (0,1) then column pays 0. 

In general, for any row strategy, there is a pure optimal column strategy. 

Now consider: 

If the Row player plays first with  ( , ) then the Column player can achieve 

min{3 − 2 ,  3 − 2 }. Row picks  ( , ) to maximize this. 

The following LP will give the optimal strategy for the Row player: 

max    

such that: 

         ≤  3 −   2    

         ≤  − +          

            +   =  1   

                 ,   ≥  0    

3 -1 

-2 1 



 

If the Column player plays first with  ( , ) then the Row player can achieve 

max{3 − , −2 + }. Column picks  ( , ) to minimize this. 

The following LP will give the optimal strategy for the Column player: 

min    

such that: 

         ≤  3 −      

         ≤  −2 +          

            +    =  1   

                 ,   ≥  0    

 
 
 
 
 
 
 


