
CPSC 420+500: Advanced Algorithm Design and Analysis

January 18 & 20, 2017

Scribe: Laura Barton

Lower Bound on Element Uniqueness

Lemma Any linear decision tree that computes some function F has height:

dlog3 (
∑

outputs t

#connected components of Ft)e

i.e., log3 of the number of connected components for each of the possible outputs of F.

Theorem Any linear decision tree that computes Element Uniqueness has height Ω(n log n). The NO
components for Element Uniqueness = 1, since all hyperplanes are joined at the origin.

Proof. Let
x = (1, 2, ..., n)

y = (2, 1, 3, ..., n)

Are x and y in the same connected component? No. If you have (1, 2) and (2, 1), at some point a path
between them would have to cross a NO region.

Let v be a vector of n unique numbers and v 6= v′ be any permutation of v. There myst be indices i and
j such that vi is smaller than vj and v′i is bigger than v′j , i.e., vi < vj , v

′
i > v′j . Any continuous path from v

to v′ must contain a point z with zi = zj (by the intermediate value theorem*). z is a NO input, so v and
v′ are not in the same connected component.

*Intermediate Value Theorem Let p be a path from points x to y where

p : [0, 1] ∈ IRn,p(0) = x,p(1) = y

Let q(t) = p(t)j − p(t)i (the difference between ith and jth coordinate in point p(t)). At some point,
q(t) = 0 because q(0) > 0, q(1) < 0 so it had to have crossed from positive to negative.

Since there are n! different permutations of a list of n numbers, and none of those permutations are in
the same component, there are at least n! different connected components, i.e., #FY ES ≥ n!. Therefore:

#FY ES + FNO = n! + 1

Plugging this into our formula for the height of the decision tree:

dlog3 (
∑

#Ft)e = dlog3 (n! + 1)e

dlog (n!)e = n log n ∈ Ω(n log n)

1



Practice Question: reduce Element Uniqueness to Convex Hull.

However, Linear Decision Trees aren’t powerful enough to calculate the Convex Hull. Algebraic Decision
Trees of the dth order use internal node tests that are dth order polynomials (i.e., Linear Decision Trees are
Algebraic Decision Trees of the 1st order.)

Jarvis March is ∈ O(nh) and Graham’s Scan is ∈ O(n log n) (where h is the number of points on the
hull); is there a more efficient algorithm?

Chan’s Algorithm

(∼1996) ∈ O(n log h) Given n points in set P and a guess h:

1. O(n) Divide points into dn/he groups of size h

2. O(h log h) per group, ∈ O(n log h) total Use Graham’s Scan to find the convex hull of each group

3. O(n) Find the lowest point p0 in P

4. O(h(n/h) log h) = O(n log h). Do giftwrapping (Jarvis March) for h steps.

Note that we don’t need to scan all the points in P , since we have h hulls that are now sorted
within themselves; we can find the rightmost tangent from pi for each sub-hull using binary search.
n/h binary searches each taking O(log h) time take a total of O(n/h log h) time. Since we do this
gift-wrapping step h times, the total time is O(hn/h log h) = O(n log h). Let pi+1 = point on the
rightmost out of those tangents.

5. If pi+1 = p0 in ≤ h steps, then output the hull. Otherwise output that h is too small.

Where does our guess h come from? Generate the guesses for the “true” h, h∗, by squaring each time:

h = 4, 16, 256...

tthtry = 22
t

The time complexity of all tries until h ≥ h∗∑
h=22t

O(n log h) until h ≥ h∗

dlog log h∗e∑
t=1

O(n2t) = n[

dlog log h∗e∑
t=1

O(2t) = O(n log h∗)

≈ 2lglgh∗

2


