> CS420+500: Advanced Algorithm Design and Analysis Lectures: Jan $18+$ Jan 20, 2017 Prof. Will Evans

In this lecture we:

- Finish up Linear Decision Tree;
- Chan's Algorithm;

1 Linear Decision Tree Continue

Lemma. Any Linear Decision Tree that computes F has

$$
\text { height } \leqslant\left\lceil\log _{3}\left(\sum_{\text {outputs } t} \# F_{t}\right)\right\rceil
$$

Theorem. Any Linear Decision Tree that computes Element Uniqueness has

$$
\text { height } \in \Omega(n \log n)
$$

Proof. idea: Are $[\mathrm{x}=\{1,2,3,4 \ldots, \mathrm{n}\}, \mathrm{y}=\{2,1,3,4 \ldots, \mathrm{n}\}]$ the same connected component?
NO! Let x be a vector of n unique numbers and $y \neq x$ be any permutation of x. There must be indices i and j s.t. $x_{i}<x_{j}$ and $y_{i}>y_{j}$. Any continuous path from x to y must contain point z with $z_{i}=z_{j}$ (by Intermediate value theorem). z is a NO-input, so x and y are not in the same connected component. Thus none of the $n!$ permutations of x are in the same connected component which implies $\# F_{\text {yes }} \geq \mathrm{n}!$.
(Intermediate Value Theorem: Let p be a path from points x to y where

$$
p:[0,1] \in \mathbb{R}^{n}, p[0]=x, p[1]=y
$$

Let $q(t)=p(t)_{j}-p(t) i$ (the difference between $i^{\text {th }}$ and $j^{t h}$ coordinate in point $\left.p(t)\right)$. At some point $q(t)=0$ because $q(0)>0, q(1)<0$ so it had to have crossed from positive to negative.)
$d^{\text {th }}$ order Algebraic Decision Trees are like Linear Decision Trees, but functions in the internal nodes are $d^{\text {th }}$ order polynomials.
The number of connected components of input space that can reach the same leaf is $\leq d(2 d-$ $1)^{n+h-1}$ in decision tree with height $h . \Rightarrow \Omega(n \log n)$ lower bound for Element Uniqueness.

2 Chan's Algorithm

We have Jarivs' March in $O(n h)$ where h is the size of Convex Hull, and Graham's Scan in $O(n \log n)$. In 1996, Timothy M. Chan combined the "best" part from both algorithms and introduced a new algorithm to find Convex Hull in $O(n \log h)$, named Chan's Algorithm.

Chan's Algorithm Detail

Given n points P and a guess h for the number of hull vertices.

1. Divide points into n / h groups of size h. $(O(n))$
2. Use Graham's Scan to find CH of each group. $(O(h \log h) *\lceil n / h\rceil=O(n \log h))$
3. Find lowest point P_{0} in P. $(O(n))$
4. Do Giftwrapping (Jarvis' March) for h steps.

Find the right tangent from P_{i} to each group hull.
$P_{i+1}=$ rightmost of these tangent points.
If $P_{i+1}=P_{0}$, output the hull. (Notice that the rightmost tangent of each hull can be done using circular binary search in $O(\operatorname{logh})$. Thus in total this step can be done in $O(\log h) *\lceil n / h\rceil=O(n / h \log h) \in O(n \log h))$
5. Output "h h is too small".

Time Complexity Generate guesses for h^{*} (true number of hull vertices). Start from

$$
h=4,16,256 \ldots 2^{2^{t}}
$$

Then sum all the cost until the right guess h^{*}.

$$
\sum_{h=2^{2^{t}}}^{h^{*}} O(n \lg h)=\sum_{t=1}^{\left\lceil\lg \lg h^{*}\right\rceil} O\left(n 2^{t}\right)=O\left(n \sum_{t=1}^{\left\lceil\lg \lg h^{*}\right\rceil} 2^{t}\right)=O\left(n \lg h^{*}\right)
$$

