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1 Overview

In this lecture, we discussed: linear decision trees, connected sets and the com-
plexity of the Element Uniqueness problem.

2 Lecture Details

2.1 Linear Decision Tree

Definition: A linear decision tree is a kind of decision tree whose nodes can be
viewed as an (n + 1)-tuple(c0, c1, ..., cn), where the ci’s form the coefficients of
the linear combination c0 + c1x1 + c2x2 + ... + cnxn. Note that x1, ..., xn are
inputs to the tree, and we make decisions at each node based on the value of
the linear combination.

Some properties of linear decision trees:

1. Decisions at each internal node is based on the sign of the linear combi-
nation.

2. Inputs that follow a child edge either form a halfspace (for < and > sign)
or a halfplane (= sign), both of which are convex. Note that halfplanes
have one less dimension than halfspaces in this case.

3. Since the intersection of convex sets are convex, by induction, it follows
that the inputs that reach any internal node form a convex set.

2.2 Connected Sets

Let F be a function, Ft = {x|F (x) = t} be the inputs that get mapped to t. A
set S is connected if for any pair of points p, q ∈ S, there exists a path through
p and q that lies completely in S.

Lemma: Let #Ft be the number of connected components in Ft. Any linear
decision tree that computes F has height at least

⌈
log3(

∑
t∈Range(F )

#Ft)e
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Proof : Each leaf node of the linear decision tree represents a connected com-
ponent having the same output. So the total number of leaves is at least∑
t∈Range(F )

#Ft. And since each internal node has up to 3 branches, the height

is at least
⌈
log3(

∑
t∈Range(F )

#Ft)e.

2.3 Complexity of Element Uniqueness

Element Uniqueness problem: Given a list of integers, determine if all
elements are distinct.

Theorem: Any linear decision tree that solves Element Uniqueness has
height Ω(nlogn).

Proof Idea/Intuition: For a list of n unique integers there are n! permutations.
If we can show that no two permutations lie in the same connected components,
then there are n! connected components in total; by the previous lemma, we’ve
proved the lower bound on the height.

Proof : Let S be a list of n unique integers and T be any permutation of S.
Since S and T are different permutations consisting of the same integers, there
must be indices i and j such that Si < Sj and Ti > Tj . Any continuous path
from S to T must contain a point V such that Vi = Vj by the Intermediate
Value Theorem. Since V is a NO-input to Element Uniqueness, S and T
do not lie in the same connected component. Since they are arbitrary, there
are at least n! different connected components to Y ES inputs of Element
Uniqueness. By the previous lemma, the height of the linear decision tree is
at least

⌈
log3(

∑
t∈Range(F )

#Ft)e = dlog3(n!)e ∈ Ω(nlogn).
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