Lectures: Jan 16 + Jan 18, 2017
Prof. Will Evans

In this lecture we discussed:

- Linear decision trees
- Connected sets
- Complexity of Element Uniqueness

Handouts (posted on webpage):

- In-class exercises

Reading: None

1 LINEAR DECISION TREES

A linear decision tree is a decision tree whose nodes are denoted by an $(n+1)-\operatorname{tuple}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)$, where the a_{i} 's represent the coefficients of the linear combination $a_{0}+a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$. See Figure 1 for an example of a linear decision tree where $n=2$.

Some key facts about linear decision trees:

1. Each internal node tests the sign of a linear function.
2. Inputs that follow a child edge lie in some halfspace (for $>$ or $<$ edges) or a hyperplane (for $=$ edges). Both the halfspaces and the hyperplane are convex.
3. Inputs that reach a leaf lie in the intersection of a sequence of halfspaces or hyperplanes, which are all convex. The intersection of convex sets is convex, so the inputs that reach a node from the root form a convex set.

Figure 2: Geometric interpretation of the linear decision tree of Figure 1. The purple region represents the region described by the black node on the bottom left of the tree.

		15	$5+5$	$\mathrm{x}_{1}+$	+ 3x	$\mathrm{X}_{2}<$	0						X_{2}						
								N											
											$5 \mathrm{x}_{1}+$	$+3 x_{2}=$	0						
										N	\square								X_{1}
											-				$\mathrm{x}_{1}+$	+2	$\mathrm{x}_{2}=$	0	
		$15+5$	$5 x_{1}$		$\mathrm{X}_{2}<$	<0													
				\&													-		
		$1+$	$\mathrm{X}_{1}+$	+2x	$\times_{2}<$	0													
															$+\mathrm{X}_{1}$		$2 \mathrm{x}_{2}$	< 0	
													-						
													-						

2 CONNECTED SETS

Let F be a function (like Element Uniqueness). Let $F_{t}=\{x \mid F(x)=t\}$. Let $\# F_{t}$ be the number of connected components in F_{t}. A set S is connected if for all points $a, b \in S$, there exists a path from a to b that lies completely in S. Note that this is similar to the definition of convexity, except for connectedness we do not have to take a straight line path.

For example, in Element Uniqueness, $\# F_{N O}=1$, since you can always follow a path from any $N O$ point to the origin. (We will prove this in Assignment 2, Exercise 6).
Lemma: Any linear decision tree that computes F has height at least $\left\lceil\log _{3}\left(\sum_{\text {outputs } t} \# F_{t}\right)\right\rceil$.

Proof. Each leaf represents one connected component that has the same output. There are at least $\sum_{\text {outputs } t} \# F_{t}$ leaves, so the height of the tree is at least $\left\lceil\log _{3}\left(\sum_{\text {outputs } t} \# F_{t}\right)\right\rceil$.

3 COMPLEXITY OF ELEMENT UNIQUENESS

Theorem: Any linear decision tree that computes Element Uniqueness has height $\Omega(n \log (n))$.
Proof Idea: Are $x=(1,2,3,4, \ldots, n)$ and $y=(2,1,3,4, \ldots, n)$ (both are examples of $Y E S$ inputs) in the same connected component? No, they are not.

Proof. Let x be a vector of n unique numbers and let $y \neq x$ be any permutation of x. First off, we know there are n ! permutations of x, so there are $n!-1$ possible choices of y for a given x. Now, since y is a permutation of x but x and y are not equal, there must be indices i, j such that $x_{i}<x_{j}$ and $y_{i}>y_{j}$. Any continuous path from x to y must contain a point z with $z_{i}=z_{j}$ (by the Intermediate Value Theorem).

To see this, let p be a continuous path from x to y. We can define p as a function like so: $p:[0,1] \rightarrow \mathbb{R}^{n}, p(0)=x, p(1)=y$. In other words, over the time interval from $t=0$ to $t=1$, our path p goes from x to y. Keep in mind that p must be continuous. Now, define $q(t)=p(t)_{j}-p(t)_{i}$. Because $p(0)=x$ and $p(1)=y$, we know that $q(0)=x_{j}-x_{i}>0$ and $q(1)=y_{j}-y_{i}<0$. By the Intermediate Value Theorem, then, because our path p is continuous, there must exist a time $t \in(0,1)$ such that $q(t)=0$, i.e. there exists a time t such that $p(t)_{j}-p(t)_{i}=0$, meaning $p(t)_{j}=p(t)_{i}$.

So there exists a point z on the path where $z_{i}=z_{j}$. But z is a $N O$ point, since two of its coordinates are equal. So, any continuous path from x to y must pass through a $N O$ point, and therefore x and y are not in the same connected component. Thus, none of the $n!$ permutations of x are in the same connected component as each other, which implies that the number of connected components of Element Uniqueness is at least $n!$. In mathematical notation, if we let $F=$ Element Uniqueness, we have $\# F_{Y E S} \geq n$!.

Therefore, by our earlier lemma, any linear decision tree that computes Element Uniqueness has height at least $\left\lceil\log _{3}\left(\sum_{\text {outputs } t} \# F_{t}\right)\right\rceil=\left\lceil\log _{3}(n!)\right\rceil$, which is $\Omega(n \log (n))$.

