
CS420+500: Advanced Algorithm Design and Analysis

Lectures: Jan 16 + Jan 18, 2017

Prof. Will Evans Scribe: David Penco

In this lecture we discussed:

• Linear decision trees

• Connected sets

• Complexity of Element Uniqueness

Handouts (posted on webpage):

• In-class exercises

Reading: None

1 LINEAR DECISION TREES

A linear decision tree is a decision tree whose nodes are denoted by an (n+1)−tuple (a0, a1, a2, ..., an),
where the ai’s represent the coefficients of the linear combination a0 +a1x1 +a2x2 + ...+anxn. See
Figure 1 for an example of a linear decision tree where n = 2.

Figure 1: Linear decision tree

1



Some key facts about linear decision trees:

1. Each internal node tests the sign of a linear function.

2. Inputs that follow a child edge lie in some halfspace (for > or < edges) or a hyperplane
(for = edges). Both the halfspaces and the hyperplane are convex.

3. Inputs that reach a leaf lie in the intersection of a sequence of halfspaces or hyperplanes,
which are all convex. The intersection of convex sets is convex, so the inputs that reach a
node from the root form a convex set.

Figure 2: Geometric interpretation of the linear decision tree of Figure 1. The purple region
represents the region described by the black node on the bottom left of the tree.

2 CONNECTED SETS

Let F be a function (like Element Uniqueness). Let Ft = {x|F (x) = t}. Let #Ft be the number
of connected components in Ft. A set S is connected if for all points a, b ∈ S, there exists a path
from a to b that lies completely in S. Note that this is similar to the definition of convexity, except
for connectedness we do not have to take a straight line path.

For example, in Element Uniqueness, #FNO = 1, since you can always follow a path from any NO
point to the origin. (We will prove this in Assignment 2, Exercise 6).

Lemma: Any linear decision tree that computes F has height at least dlog3(
∑

outputs t
#Ft)e.

2



Proof. Each leaf represents one connected component that has the same output. There are at least∑
outputs t

#Ft leaves, so the height of the tree is at least dlog3(
∑

outputs t
#Ft)e.

3 COMPLEXITY OF ELEMENT UNIQUENESS

Theorem: Any linear decision tree that computes Element Uniqueness has height Ω(nlog(n)).

Proof Idea: Are x = (1, 2, 3, 4, ..., n) and y = (2, 1, 3, 4, ..., n) (both are examples of Y ES inputs) in
the same connected component? No, they are not.

Proof. Let x be a vector of n unique numbers and let y 6= x be any permutation of x. First off,
we know there are n! permutations of x, so there are n! − 1 possible choices of y for a given x.
Now, since y is a permutation of x but x and y are not equal, there must be indices i, j such that
xi < xj and yi > yj . Any continuous path from x to y must contain a point z with zi = zj (by the
Intermediate Value Theorem).

To see this, let p be a continuous path from x to y. We can define p as a function like so:
p : [0, 1]→ Rn, p(0) = x, p(1) = y. In other words, over the time interval from t = 0 to t = 1, our
path p goes from x to y. Keep in mind that p must be continuous. Now, define q(t) = p(t)j − p(t)i.
Because p(0) = x and p(1) = y, we know that q(0) = xj − xi > 0 and q(1) = yj − yi < 0.
By the Intermediate Value Theorem, then, because our path p is continuous, there must exist a
time t ∈ (0, 1) such that q(t) = 0, i.e. there exists a time t such that p(t)j − p(t)i = 0, meaning
p(t)j = p(t)i.

So there exists a point z on the path where zi = zj . But z is a NO point, since two of its coordinates
are equal. So, any continuous path from x to y must pass through a NO point, and therefore x
and y are not in the same connected component. Thus, none of the n! permutations of x are in the
same connected component as each other, which implies that the number of connected components
of Element Uniqueness is at least n!. In mathematical notation, if we let F = Element Uniqueness,
we have #FY ES ≥ n!.

Therefore, by our earlier lemma, any linear decision tree that computes Element Uniqueness has

height at least dlog3(
∑

outputs t
#Ft)e = dlog3(n!)e, which is Ω(nlog(n)).

3


