CS420+4-500: Advanced Algorithm Design and Analysis

Lectures: Jan 16 4+ Jan 18, 2017
Prof. Will Evans Scribe: David Penco

In this lecture we discussed:

e Linear decision trees
e Connected sets

e Complexity of Element Uniqueness
Handouts (posted on webpage):
e In-class exercises

Reading: None

1 LINEAR DECISION TREES

A linear decision tree is a decision tree whose nodes are denoted by an (n+1)—tuple (ag, a1, az, ..., ay),
where the a;’s represent the coefficients of the linear combination ag + a1x1 + aszs + ... + anx,. See
Figure 1 for an example of a linear decision tree where n = 2.

Figure 1: Linear decision tree

ag=15,a1=5,a2=3




Some key facts about linear decision trees:

1. Each internal node tests the sign of a linear function.

2. Inputs that follow a child edge lie in some halfspace (for > or < edges) or a hyperplane
(for = edges). Both the halfspaces and the hyperplane are convex.

3. Inputs that reach a leaf lie in the intersection of a sequence of halfspaces or hyperplanes,
which are all convex. The intersection of convex sets is convex, so the inputs that reach a
node from the root form a convex set.

Figure 2: Geometric interpretation of the linear decision tree of Figure 1. The purple region
represents the region described by the black node on the bottom left of the tree.

5+ 5% # 3% < X2

N 19 + §x1 ¥ 3% =0

N X1
\1+X1+2}(2:0
15+5X1+3X2 =0 \\ ™
& N\
14x1 ¥ 242 <[0 ‘\ -

1#x1+2x2%0

2 CONNECTED SETS

Let F be a function (like Element Uniqueness). Let F; = {z|F(z) = t}. Let #F}; be the number
of connected components in F;. A set S is connected if for all points a,b € S, there exists a path
from a to b that lies completely in S. Note that this is similar to the definition of convexity, except
for connectedness we do not have to take a straight line path.

For example, in Element Uniqueness, #Fnyo = 1, since you can always follow a path from any NO
point to the origin. (We will prove this in Assignment 2, Exercise 6).

Lemma: Any linear decision tree that computes F has height at least [logs( > #F})].
outputs ¢



Proof. Each leaf represents one connected component that has the same output. There are at least
> #F, leaves, so the height of the tree is at least [logs( Y. #F;)]. [ |

outputs ¢ outputs ¢

3 COMPLEXITY OF ELEMENT UNIQUENESS

Theorem: Any linear decision tree that computes Element Uniqueness has height Q(nlog(n)).

Proof Idea: Are x = (1,2,3,4,...,n) and y = (2,1, 3,4, ...,n) (both are examples of Y E'S inputs) in
the same connected component? No, they are not.

Proof. Let x be a vector of n unique numbers and let y # x be any permutation of x. First off,
we know there are n! permutations of x, so there are n! — 1 possible choices of y for a given zx.
Now, since y is a permutation of x but z and y are not equal, there must be indices i, j such that
x; < xj and y; > y;. Any continuous path from x to y must contain a point z with z; = z; (by the
Intermediate Value Theorem).

To see this, let p be a continuous path from z to y. We can define p as a function like so:
p:[0,1] — R™, p(0) = z, p(1) = y. In other words, over the time interval from ¢t = 0 to ¢t = 1, our
path p goes from x to y. Keep in mind that p must be continuous. Now, define ¢(t) = p(t); — p(t);.
Because p(0) = « and p(1) = y, we know that ¢(0) = z; —x; > 0 and ¢(1) = y; —y; < 0.
By the Intermediate Value Theorem, then, because our path p is continuous, there must exist a
time ¢t € (0,1) such that ¢(t) = 0, i.e. there exists a time ¢ such that p(t); — p(t); = 0, meaning

p(t); = p(t)i-

So there exists a point z on the path where z; = z;. But 2 is a NO point, since two of its coordinates
are equal. So, any continuous path from x to y must pass through a NO point, and therefore x
and y are not in the same connected component. Thus, none of the n! permutations of = are in the
same connected component as each other, which implies that the number of connected components
of Element Uniqueness is at least n!. In mathematical notation, if we let /' = Element Uniqueness,
we have #Fygg > nl.

Therefore, by our earlier lemma, any linear decision tree that computes Element Uniqueness has
height at least [logs( > #I})] = [logs(n!)], which is Q(nlog(n)). [ |

outputs ¢



