
CS420+500: Advanced Algorithm Design and Analysis

Lectures: Jan 11 + Jan 13, 2017

Prof. Will Evans Scribe: Omar AlOmeir

In this lecture we:

• Did a quick group exercise

• Discussed reduction of a Convex Hull algorithm into a sorting algorithm to find a lower bound
for Convex Hull algorithms

• Discussed the Element Uniqueness problem

• Discussed Linear Decision Trees

Handouts (posted on webpage):

• Group-work exercises (Wednesday Jan 11) (Not posted yet!)

Reading:

• Otfried Cheong’s Algebraic Decision Tree Notes (Posted on webpage)

1 Reduction of Convex Hull algorithm

Is Graham Scan the fastest possible Convex Hull algorithm? How to show that every Convex Hull
algorithm takes Ω(n log n) on worst-case inputs of size n?

To answer those questions, suppose there exists a Convex Hull algorithm that’s really fast. We
assume our algortihm solves the Convex Hull problem correctly but we do not know how it works.
The algorithm is shown in figure 1.

We can use this algorithm to build a really fast sorting box, as shown in figure 2.

We have two elements to our sorting box, input transformer I and output transformer O. I trans-
forms input from an unsorted list or array (input of sorting algorithm) x1, x2...xn into a set of

Set of points P

Input
Convex Hull algorithm

Convex Hull(P)

Output

Figure 1: The (really!) fast Convex Hull algorithm is treated as a black box with input and output.

1



x1, x2...xn

Input
I

P
CH alg

CH
O

Sorted x1, x2...xn

Output

Figure 2: The Convex Hull algorithm reduced into a sorting algorithm with all the necessary
components.

points P (input for the Convex Hull algorithm). O transforms output of the Convex Hull algorithm
(set of points P) into sorted order list x1, x2...xn (output of sorting algorithm). These I and O
transformers must be really fast (≤ o(n log n)). They must not be a bottleneck to the sorting
algorithm.

Intuition for I and O:
I: Every point xi is mapped to (xi, x

2
i ). Time complexity O(n).

O: Find the smallest x-coordinate point then report Convex Hull points from it in counter-clockwise
order. Time complexity O(n).

To transform single values from the array x1, x2...xn into inputs for the Convex Hull algorithm (in
the form of (x, y) points, the values in the array need a y-value. Giving the y value as x2i creates
a parabola and the Convex Hull will include all the points on the parabola. Reporting the points
from smallest to largest x-coordinates will give a sorted list of x values. The time complexities of I
and O show that they will not be a bottleneck.

To analyze run-time:
Let TCH(n) = run time of fastest Convex Hull algorithm
Let Tsort(n) = run time of fastest sorting algorithm
Tsort(n) ∈ Ω(n log n)

We know the following:

x3 0 x2 x4 x1

Figure 3: Points in P : x1, x2...xn mapped to (xi, x
2
i ). All points in P , since they lie on a parabola,

are vertices of the convex hull of P .

2



1. Tsort(n) ≤ TCH(n) +O(n) +O(n)

2. Tsort(n) ≥ c.nlogn

From 1, and 2 we can deduce that TCH(n) +O(n) +O(n) ≥ c.nlogn
Thus TCH(n) ≥ c.nlogn− αn ∈ Ω(nlogn)

There are two issues that come up with this reduction of Convex Hull algorithm into sorting:

1. Finding unordered Convex Hull vertices can possibly be done a lot faster

2. We know Tsort(n) ∈ O(nlogn) only in a comparison based computational model. Convex
Hulls cannot be computed in such a model (lower bound is infinity for the Convex Hull
algorithm in this model). The reduction to sorting uses at least the transformation from xi
to (xi, x

2
i ), this transformation requires an algebraic operation (multiplication) that cannot

be performed in the comparison based model. So we cannot tell whether Graham Scan is a
good algorithm or not.

To address these issues we will we can show that Element Uniqueness, a simpler problem than
sorting, can be solved using an algorithm for unordered (or even counting) Convex Hulls. This
algorithm takes Ω(nlogn) time on a more powerful model of computation: The Algebraic Decision
Tree model.

2 Element Uniqueness problem

Given x1, x2...xn
Output No if xi = xj for i 6= j
Yes otherwise

3 Linear decision trees (Algebraic decision trees of degree 1)

A linear decision tree is a ternary tree model of computation. It has a fixed input of size n. Every
internal node has a vector label of real numbers < a0, a1...an > and 3 child edges labeled -, 0, +.

Figure 4 shows an example of a linear decision tree with n = 2.

To use a linear decision tree with input x1, x2...xn, start at the root with label a0, a1...an.
Evaluate a0 + a1x1 + a2x2 + ...+ anxn and follow the child edge with the sign of the result. Repeat
until you reach a leaf.

3



a0 = 15, a1 = 5, a2 = 3

a0 = 1, a1 = 1, a2 = 2

Yes

-

No

0

Yes

+

- 0 +

Figure 4: A linear decision tree with n = 2. The leaves have yes/no answers as output for element
uniqueness.

4


