CS420+500: Advanced Algorithm Design and Analysis

Lectures: Jan 4 + Jan 6, 2017

Prof. Will Evans

Scribe: Laura Cang

In this lecture we:

- Discussed THE COURSE SYLLABUS;
- TOOK A SHORT QUIZ (not graded, solutions posted to Piazza);
- AND started studying CONVEX HULLS Jarvis March

Handouts (posted on webpage):

- CS 420+500 Syllabus (aka the webpage)
- quiz

Reading: NO ASSIGNED READING(S) THIS WEEK.

1 CONVEX HULLS

Suppose we're in charge of making the salad dressing. We have bottles of oil and vinegar in the following ratios:

bottle	oil	vinegar
Α	15%	36%
В	9%	21%

Table 1: Ingredier	nts in	uns	atisfact	tory j	premixed	salad	dressing

Q: Can we mix bottles A and B to get 13% oil and 31% vinegar?

A: Yes. We use 2 parts A and 1 part B.

Table 2: New salad dressing									
bottle	oil	vinegar	proportion	oil'	vinegar'				
Α	15%	36%	2/3	10%	24%				
В	9%	21%	1/3	3%	7%				
		A + B	1	13%	31%				

Q: Can we create a mixture of 12% oil and 30% vinegar? A: No.

How can we tell which mixtures are achievable?

We can make any dressing with ratios lying on the line connecting \overline{AB} .

If we have a new bottle C, then we can make any ratio within the area of the connected shape $\triangle ABC$.

A mixture is a convex combination of points $P = \{p_1, p_2, ..., p_n\}$ representing the contents of bottles or $\sum_{i=1}^{n} \alpha_i p_i$ where $\sum_{i=1}^{n} \alpha_i = 1, \alpha_i \ge 0$ for all *i*.

[def] The convex hull of P or CH(P) is the smallest convex set containing P.

[def] A set T is *convex* if for all $a, b \in T$, \overline{ab} is in T.

[def] A supporting line is a line going through a boundary point $b \in T$ such that all points in T fall on one side of that line.

Convex

<u>Problem</u>: Input set of points $P = \{p_1, p_2, ..., p_n\}$ Output convex hull of P

1.1 Jarvix March (Gift wrapping) 1973

<u>ALGORITHM</u>: Imagine hammering nails (representing P) into a board, then wrapping a rubber band around the outer nails.

(1) Find point p_0 that is guaranteed to be in the convex hull of P such as the point with the minimum y-coordinate.

(2) set
$$h = 0$$

(3) repeat
pick $q \in P \setminus \{p_h\}$
for each $p \in P$
if rightturn (p_h, q, p)
 $q = p$
 $p_{h+1} = q$
 $h = h + 1$
until
 $p_h = p_0$

<u>RUNTIME</u> Now we consider the running time of Jarvis March.

 $\begin{array}{l} \operatorname{Step}(1) \in O(n) \\ \operatorname{Step}(2) \in O(1) \\ \operatorname{Step}(3) \in \Theta(n^2) \\ [\operatorname{THINK}] \text{ worst case: each right turn check } \in O(n) \text{ and we must do this for each point} \\ n \text{ times } \therefore O(n^2) \text{ but since we must go through all elements, run time is also} \\ \Omega(n^2) \text{ thus overall, we have } \Theta(n^2) \end{array}$

The \underline{CON} of Jarvis March is that we end up checking the same points multiple times, repeating similar work. What if we do a sort by angle first?

1.2 NEXT LECTURE: Graham's Scan 1972