CS420+500: Advanced Algorithm Design and Analysis
Lectures: Jan 4 + Jan 6, 2017
Prof. Will Evans

In this lecture we:

- Discussed THE COURSE SYLLABUS;
- TOOK A SHORT QUIZ (not graded, solutions posted to Piazza);
- AND started studying CONVEX HULLS - Jarvis March

Handouts (posted on webpage):

- CS 420+500 Syllabus (aka the webpage)
- quiz

Reading: NO ASSIGNED READING(S) THIS WEEK.

1 CONVEX HULLS

Suppose we're in charge of making the salad dressing. We have bottles of oil and vinegar in the following ratios:

Table 1: Ingredients in unsatisfactory premixed salad dressing

bottle	oil	vinegar
\mathbf{A}	15%	36%
\mathbf{B}	9%	21%

Q: Can we mix bottles A and B to get 13% oil and 31% vinegar?
A: Yes. We use 2 parts A and 1 part B.

Table 2: New salad dressing

bottle	oil	vinegar	proportion	oil'	vinegar''
A	15%	36%	$2 / 3$	10%	24%
B	9%	21%	$1 / 3$	3%	7%
$\mathrm{~A}+\mathrm{B}$					

Q: Can we create a mixture of 12% oil and 30% vinegar?
A: No.
How can we tell which mixtures are achievable?

We can make any dressing with ratios lying on the line connecting $\overline{A B}$.

If we have a new bottle C , then we can make any ratio within the area of the connected shape $\triangle A B C$.

A mixture is a convex combination of points $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ representing the contents of bottles or $\sum_{i=1}^{n} \alpha_{i} p_{i}$ where $\sum_{i=1}^{n} \alpha_{i}=1, \alpha_{i} \geq 0$ for all i.
[def] The convex hull of P or $\mathrm{CH}(\mathrm{P})$ is the smallest convex set containing P.
[def] A set T is convex if for all $a, b \in T, \overline{a b}$ is in T.
[def] A supporting line is a line going through a boundary point $b \in T$ such that all points in T fall on one side of that line.

Convex

NOT Convex

Problem: Input set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
Output convex hull of P

1.1 Jarvix March (Gift wrapping) 1973

ALGORITHM: Imagine hammering nails (representing P) into a board, then wrapping a rubber band around the outer nails.
(1) Find point p_{0} that is guaranteed to be in the convex hull of P such as the point with the minimum y-coordinate.
(2) set $h=0$
(3) repeat
pick $q \in P \backslash\left\{p_{h}\right\}$
for each $p \in P$
if rightturn $\left(p_{h}, q, p\right)$
$q=p$
$p_{h+1}=q$
$h=h+1$
until
$p_{h}=p_{0}$

RUNTIME Now we consider the running time of Jarvis March.
$\operatorname{Step}(1) \in O(n)$
$\operatorname{Step}(2) \in O(1)$
Step $(3) \in \Theta\left(n^{2}\right)$
[THINK] worst case: each right turn check $\in O(n)$ and we must do this for each point n times $\therefore O\left(n^{2}\right)$ but since we must go through all elements, run time is also $\Omega\left(n^{2}\right)$ thus overall, we have $\Theta\left(n^{2}\right)$

The CON of Jarvis March is that we end up checking the same points multiple times, repeating similar work. What if we do a sort by angle first?

1.2 NEXT LECTURE: Graham's Scan 1972

