CS420+500: Advanced Algorithm Design and Analysis

Lectures: January 4 + 6, 2017

Prof. Will Evans

 $Scribe: \ Elizabeth \ Hu$

In this lecture we discussed:

- Convex Hulls
- Jarvis March (gift-wrapping algorithm)
- Introduction to Graham's Scan algorithm

Handouts (posted on webpage): No handouts.

Reading: No assigned readings.

1 Convex Hulls

Motivating Example: Salad Dressing

Consider 2 bottles both containing oil and vinegar.

	Oil	Vinegar
Bottle a	15%	36%
Bottle b	9%	21%

- Can we mix the 2 bottles to get 13% oil and 31% vinegar?

Yes \rightarrow 2 parts Bottle a, 1 part Bottle b.

- What about 12% oil and 30% vinegar?

Now consider the case with 3 bottles.

	Oil	Vinegar
Bottle a	15%	36%
Bottle b	9%	21%
Bottle c	12%	33%

Notice we can translate this example onto the Cartesian Plane:

No.

- A **mixture** is a convex combination of points representing the contents of bottles.
- A convex combination of points $p_1, p_2, ..., p_n$ is

$$\sum_{i=1}^{n} \alpha_i p_i$$

where

$$\sum_{i=1}^{n} \alpha_i = 1 \quad and \quad \alpha_i \ge 0$$

Ex. If P is a set of points, then the (closed) interior of the outline is the set of all convex combinations of P

Definition: Convex Hull of P. Let P be a set of points.

 $CH(P) \equiv$ the smallest convex set that contains P.

• A set T is **convex** if for all $a, b \in T$, segment \overline{ab} is in T.

2 Jarvis March (Gift-Wrapping Algorithm) 1973

Problem. Given a set of points $P = p_1, p_2, ..., p_n$, find the convex hull of P.

Algorithm.

1.	Find point p_0 in P with minimum y-coordinate	O(n)
2.	Set h=0	
3.	Repeat	$\mathcal{O}(n^2)$
	$\mathrm{Pick}\;\mathrm{q}\in\mathrm{P}\;\backslash\;p_h$	
	For each $p \in P$	
	If rightturn (p_h, q, p)	
	q=p	
	$p_{h+1} = q$	
	h = h+1	
	Until	
	$p_h = p_0$	

Worst Case: $\Theta(n^2)$

3 Introduction to Graham's Scan 1972

Algorithm.

- 1. Find point p_0 in P with minimum y-coordinate O(n)
- 2. Sort remaining points by angle around P (counter clockwise)
- 3. Calculate successively:
 - $CH(p_0, p_1, p_2)$ - $CH(p_0, ..., p_3)$
 - $CH(p_0, ..., p_3)$
 - ...