CS420+500: Advanced Algorithm Design and Analysis	
Lectures: January $4+6,2017$	
Prof. Will Evans	Scribe: Elizabeth Hu

Prof. Will Evans
Scribe: Elizabeth Hu

In this lecture we discussed:

- Convex Hulls
- Jarvis March (gift-wrapping algorithm)
- Introduction to Graham's Scan algorithm

Handouts (posted on webpage): No handouts.
Reading: No assigned readings.

1 Convex Hulls

Motivating Example: Salad Dressing
Consider 2 bottles both containing oil and vinegar.

	Oil	Vinegar
Bottle a	15%	36%
Bottle b	9%	21%

- Can we mix the 2 bottles to get 13% oil and 31% vinegar?

Yes $\rightarrow 2$ parts Bottle a, 1 part Bottle b.

- What about 12% oil and 30% vinegar?

No.
Now consider the case with 3 bottles.

	Oil	Vinegar
Bottle a	15%	36%
Bottle b	9%	21%
Bottle c	12%	33%

Notice we can translate this example onto the Cartesian Plane:

- A mixture is a convex combination of points representing the contents of bottles.
- A convex combination of points $p_{1}, p_{2}, \ldots, p_{n}$ is

$$
\sum_{i=1}^{n} \alpha_{i} p_{i}
$$

where

$$
\sum_{i=1}^{n} \alpha_{i}=1 \quad \text { and } \quad \alpha_{i} \geq 0
$$

Ex. If P is a set of points, then the (closed) interior of the outline is the set of all convex combinations of P

Definition: Convex Hull of P. Let P be a set of points.
$\mathrm{CH}(\mathrm{P}) \equiv$ the smallest convex set that contains P .

- A set T is convex if for all $a, b \in T$, segment $\overline{a b}$ is in T.

Convex

Not Convex

2 Jarvis March (Gift-Wrapping Algorithm) 1973

Problem. Given a set of points $\mathrm{P}=p_{1}, p_{2}, \ldots, p_{n}$, find the convex hull of P .

Algorithm.

1. Find point p_{0} in P with minimum y-coordinate
$\mathrm{O}(\mathrm{n})$
2. Set $h=0$
3. Repeat

Pick $\mathrm{q} \in \mathrm{P} \backslash p_{h}$
For each $p \in P$
If rightturn $\left(p_{h}, \mathrm{q}, \mathrm{p}\right)$
$\mathrm{q}=\mathrm{p}$
$p_{h+1}=\mathrm{q}$
$h=h+1$
Until

$$
p_{h}=p_{0}
$$

Worst Case: $\Theta\left(n^{2}\right)$

3 Introduction to Graham's Scan 1972

Algorithm.

1. Find point p_{0} in P with minimum y-coordinate
$\mathrm{O}(\mathrm{n})$
2. Sort remaining points by angle around P (counter clockwise)
3. Calculate successively:

- $\mathrm{CH}\left(p_{0}, p_{1}, p_{2}\right)$
- $\mathrm{CH}\left(p_{0}, \ldots, p_{3}\right)$
$-\mathrm{CH}\left(p_{0}, \ldots, p_{4}\right)$

