
CPSC 420+500 Problem Set 5 6 Mar 2017
W. Evans Due: 13 Mar 2017 at 21.00 (9pm)

Submission Instructions

Handin your solutions using handin. You can write your solutions by hand and scan the pages or
take pictures of them with your phone; or use a word processing package to typeset your solutions.
Whatever you do, you should produce pdf files assign5Q1.pdf, assign5Q2.pdf, etc. containing
your solutions for Question 1, Question 2, etc.

To handin: Copy your solution files to the directory ∼/cs420/a5 in your home directory on
a CS undergraduate machine. (You may have to create this directory using mkdir ∼/cs420/a5.)
Then run handin cs420 a5 from your home directory.

If you do not have a CS department account, you can email your assign1.pdf to me will@cs.

ubc.ca.
Late submissions are not accepted.

Grading Policy

We will grade a subset of these questions of size at least two. It’s a good idea to do all of the
questions because (1) you don’t know which ones we’ll grade and (2) answering these questions
is good practice for the exams. We will email feedback to the email address associated with the
account you used to handin the assignment.

Questions

Try to answer these on your own but if you work with someone or use an outside
source you must acknowledge them in your write-up. Do not copy solutions from any
source.

1. (from Exercise 6.1 Kleinberg & Tardos) Max weight independent set in a path In a graph,
a subset of vertices is an independent set if no two are joined by an edge. Given a graph
G = (V,E) that is a path in which every vertex v has a weight w(v), we want to find an
independent set of maximum weight.

• Heaviest-First Give an example to show that the algorithm that chooses the vertex of
heaviest weight, removes it and its adjacent vertices from G, and repeats, does not choose
an independent set of maximum weight.

• Even-Odd Give an example to show that the algorithm that chooses the heavier of the
set of all even vertices and the set of all odd vertices does not choose an independent set
of maximum weight. Note: A vertex is even if it is the ith vertex from the start of the
path (pick one end to be the start) and i is even, otherwise it is odd.

• Describe an algorithm that runs in time polynomial in the number of path vertices, n,
that does find an independent set of maximum weight.

2. (Problem 5.8.2 in Algorithmics by Brassard and Bratley) Consider the alphabet Σ = {a, b, c}.
The elements of Σ have the following multiplication table:

1



Right-hand symbol
a b c

Left-hand a b b a
symbol b c b a

c a c c

Thus ab = b, ba = c, and so on. Note that the multiplication defined by this table is neither
commutative nor associative.

Find an efficient algorithm that examines a string x = x1x2 . . . xn of characters of Σ and
decides whether or not it is possible to parenthesize x in such a way that the value of the
resulting expression is a. For example, if x = bbbba, your algorithm should return “yes”
because (b(bb))(ba) = a. (This is not the only parenthesization that works: (b(b(b(ba)))) = a.)

3. (from Exercise 16.2-2 from CLRS) A thief enters a store that has n items; the ith item is
worth vi dollars and weighs wi pounds, where vi and wi are integers. The thief can carry
at most W pounds in his knapsack for some integer W . The knapsack problem is to find
the most valuable load the thief can take, subject to the weight capacity W of his knapsack.
Give a dynamic-programming solution to the knapsack problem that runs in O(nW ) time.

Note: As an interesting optional exercise, what if the thief could take a fraction fi (between
0 and 1) of an item and obtain value fivi and weight fiwi? Can you model this problem as
a linear program?

4. (Problem 15-3 from CLRS) Printing neatly Consider the problem of neatly printing a para-
graph on a printer. The input text is a sequence of n words of lengths `1, `2, . . . , `n, measured
in characters. We want to print this paragraph neatly on a number of lines that hold a
maximum of M characters each. Our criterion of “neatness” is as follows. If a given line
contains words i through j, where i ≤ j, and we leave exactly one space between words, the
number of extra space characters at the end of the line is M − j + i −

∑j
k=i `k, which must

be nonnegative so that the words fit on the line. We wish to minimize the sum, over all lines
except the last, of the cubes of the numbers of extra space characters at the ends of the lines.
Give a dynamic-programming algorithm to print a paragraph of n words neatly on a printer.
Analyze the running time and space requirements of your algorithm.

2


