
CPSC 420+500 Problem Set 3 7 Feb 2017
W. Evans Due: 15 17 Feb 2017 at 21.00 (9pm)

Submission Instructions

Handin your solutions using handin. You can write your solutions by hand and scan the pages or
take pictures of them with your phone; or use a word processing package to typeset your solutions.
Whatever you do, you should produce pdf files assign3Q1.pdf, assign3Q2.pdf, etc. containing
your solutions for Question 1, Question 2, etc.

To handin: Copy your solution files to the directory ∼/cs420/a3 in your home directory on
a CS undergraduate machine. (You may have to create this directory using mkdir ∼/cs420/a3.)
Then run handin cs420 a3 from your home directory.

If you do not have a CS department account, you can email your assign1.pdf to me will@cs.

ubc.ca.
Late submissions are not accepted.

Grading Policy

We will grade a subset of these questions of size at least two. It’s a good idea to do all of the
questions because (1) you don’t know which ones we’ll grade and (2) answering these questions
is good practice for the exams. We will email feedback to the email address associated with the
account you used to handin the assignment.

Questions

Try to answer these on your own but if you work with someone or use an outside
source you must acknowledge them in your write-up.

1. (Problem 7.10 Algorithms by Dasgupta, Papadimitriou, Vazirani) For the following network,
with edge capacities as shown, find the maximum flow from s to t, along with a matching
cut.

s

a

b

c

d

e

f

g

t
20

1

6

4

1
5

10

6

4
5

2

2

10

12

2

2. (From Problem 23-12 Algorithms Course Notes by Erickson) The GreedyFlow algorithm
is a simplification of the generic Ford-Fulkerson augmenting path algorithm that doesn’t use
a residual graph. Instead, after finding an augmenting path from s to t, it just reduces the
capacity of every edge on the path by the capacity of the smallest capacity edge on the path,
removing edges with zero capacity.

GreedyFlow(G, c, s, t):
for every edge e in G

f(e) = 0

1



while there is a path from s to t
π = an arbitrary path from s to t
b = minimum capacity of any edge in π
for every edge e in π

f(e) = f(e) + b
if c(e) = b then remove e from G
else c(e) = c(e) − b

return f

Show that this algorithm does not always compute a maximum flow.

3. Let a and b be two vertices in a directed graph G. Give an algorithm that calculates the
number of vertex disjoint paths from a to b. A set of paths from a to b is vertex disjoint if no
two paths in the set share a common vertex, other than a and b. Explain why your solution
works.

Hint: Formulate the problem as a network flow. Suppose we add unit capacities to all the
edges in G and make a the source and b the sink. Why isn’t the max flow in this flow network
the answer? How should we construct a flow network from G so that the max flow is the
answer?

4. (Problem 7-22 Algorithm Design by Kleinberg and Tardos) Let M be an n× n matrix with
each entry equal to either 0 or 1. Let mij denote the entry in row i and column j. A diagonal
entry is one of the form mii for some i.

Swapping rows i and j of the matrix M means swapping mik with mjk for all k = 1..n. A
similar definition holds for swapping columns.

M is rearrangeable if by swapping rows and/or swapping columns of M one can make all
diagonal entries be 1.

(a) Give an example of a matrix M that is not rearrangeable even though every column and
every row contains at least one entry that equals 1.

(b) Describe an efficient algorithm (running in polynomial time) that determines if M is
rearrangeable.

5. (Problem 24-4 Algorithms Course Notes by Erickson) A cycle cover of a given directed graph
G = (V,E) is a set of vertex-disjoint cycles that cover all the vertices. Describe and analyze
an efficient algorithm to find a cycle cover for a given graph, or correctly report that no cycle
cover exists. [Hint: Use bipartite matching!]

2


