
CPSC 420+500 Problem Set 2 17 Jan 2017
W. Evans Due: 30 Jan 2017 at 21.00 (9pm)

Submission Instructions

Handin your solutions using handin. You can write your solutions by hand and scan the pages or
take pictures of them with your phone; or use a word processing package to typeset your solutions.
Whatever you do, you should produce pdf files assign2Q1.pdf, assign2Q2.pdf, etc. containing
your solutions for Question 1, Question 2, etc.

To handin: Copy your solution files to the directory ∼/cs420/a2 in your home directory on
a CS undergraduate machine. (You may have to create this directory using mkdir ∼/cs420/a2.)
Then run handin cs420 a2 from your home directory.

If you do not have a CS department account, you can email your assign1.pdf to me will@cs.

ubc.ca.
Late submissions are not accepted.

Grading Policy

We will grade a subset of these questions of size at least two. It’s a good idea to do all of the
questions because (1) you don’t know which ones we’ll grade and (2) answering these questions
is good practice for the exams. We will email feedback to the email address associated with the
account you used to handin the assignment.

Questions

Try to answer these on your own but if you work with someone or use an outside
source you must acknowledge them in your write-up.

1. The depth of a point p in a multi-set of points P in the
plane (there might be duplicate points) is 0 if p is on the
boundary of the convex hull of P , otherwise the depth of p
is one plus the depth of p in the set P without the points
on the boundary of the convex hull of P . Point depth is
indicated in the figure.
Prove that any algorithm that calculates the maximum
depth of a point in P takes Ω(n log n) time, where n = |P |,
in the algebraic decision tree model of computation.

0

0 0

0

0
0

0

1
1

1

1

1

2 2

22

0

00

three duplicate points

You may use the fact that solving Element Uniqueness takes Ω(n log n) time in the alge-
braic decision tree model.

2. Voronoi diagram. Let S = {s1, s2, . . . , sn} be a set of n points in the plane. A Voronoi
diagram partitions the plane into Voronoi regions R1, R2, . . . , Rn where Ri is the set of points
in the plane whose closest site is si, that is, Ri = {p | d(p, si) ≤ d(p, sj) for all j}. Here’s an
example:

1

1

2

3

4 5

6
7

8

Prove that every Voronoi region is convex. Remember that a set R is convex if for any two
points a and b in R, the line segment connecting a and b is in R; and the intersection of
convex sets is convex.

3. Delaunay Triangulation The Delaunay triangulation of a set S of points in the plane is a
partition of the convex hull of S into triangles whose vertices are the points of S such that
the circumcircle of any triangle in the partition contains no points of S in its interior. The
following figure shows the Delaunay triangulation, with bold lines, and the Voronoi diagram
of a set of points. As you can see, the Delaunay triangulation is closely related to the Voronoi
diagram.

1

2

3

4 5

6

7
8

Suppose the points are colored white and black. Prove that the closest pair of points of
different colors in S is an edge of a triangle in the Delaunay triangulation. (This should be a
very short proof. You may use the fact that pq for p, q ∈ S is an edge of a Delaunay triangle
for S if and only if there exists a circle through p and q that contains no points in S.)

4. (from Exercise 5.4.5.2 from “Computational Geometry in C” by J. O’Rourke) One-dimensional
Voronoi diagrams. Let S = s1 < s2 < · · · < sn be a sequence of real numbers. We think of
these as Voronoi sites on the x-axis. A one-dimensional Voronoi diagram of S is a sequence
of real numbers (m1,m2, . . . ,mn−1) such that mi is the midpoint of sisi+1.

Suppose you are given a sequence M = (m1,m2, . . . ,mn−1) of real numbers. Describe an
efficient algorithm that finds a sequence of n sites for which M is the Voronoi diagram, or
reports that there is no such sequence.

5. Kuba’s March is an algorithm to calculate the convex hull of a set of points P in the plane.
Here it is:

KubasMarch(P)
1. Let p1 and p2 be the points with minimum and maximum y-coordinate.
2. Let S be an empty stack and Q be an empty queue.

2

3. Push segment (p2, p1) and segment (p1, p2) onto S.
4. While S is not empty
5. Pop segment (p, q) from S.
6. Find the point r furthest to the right of the directed line −→pq through p to q.

(In case of ties, pick the one that is closest to p.)
7. If no such r lies strictly to the right of −→pq then enqueue p into Q.
8. else push segment (r, q) and segment (p, r) onto S.
9. Output Q.

(a) Explain why Kuba’s March takes O(nh) time where n = |P | and h is the number of
points on the convex hull of P .

(b) As in Chan’s algorithm, describe how to find the convex hull of dn/he convex hulls, each
of size at most h using Graham’s Scan and Kuba’s March in O(n log h) time.

6. Consider the set Z of inputs x1, x2, . . . , xn (where xi ∈ R for all i) that are NO-inputs of
Element Uniqueness (i.e., xi = xj for some i 6= j). How many connected components does
Z have? Explain why.

7. Let I = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n intervals on the positive real line: 0 ≤
xi ≤ yi. Interval (xi, yi) is contained in interval (xj , yj) if xj ≤ xi and yi ≤ yj . We are
interested in calculating the number of pairs of intervals in I such that one interval is contained
in the other.

(a) Describe an algorithm that solves this problem in O(n log n) time in the linear decision
tree model of computation. Hint: There is a divide and conquer solution when the
intervals are viewed as points in the plane. (Please use English and pseudo-code to
describe your algorithm. You do not need to describe the algorithm using a linear
decision tree. In fact, a linear decision tree only works for a particular input size, while
your algorithm should work for any input size.)

(b) Prove that any algorithm (in the linear decision tree model) that solves this problem
takes Ω(n log n) time. Hint: Use a reduction.

3

