MapReduce

Mark Greenstreet and Ian M. Mitchell

CpSc 418 - April 4, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Table of Contents

- 1 Problem Context: Big Parallelism for Big Data
- MapReduce: The Pattern
- MapReduce: The Implementation
- MapReduce: Results

CPSC 418: Where are We?

We have seen many ways of thinking about parallel computing:

- Programming models: Message passing, shared memory, sorting networks, data parallel, . . .
- Analysis models: RAM, PRAM, CTA, logP, Amdahl / Gustafson, Dennard scaling, . . .
- Hardware platforms: Distributed memory clusters with commodity interconnect, supercomputing clusters with specialized interconnect, shared memory processors, multi-core processors, vector-processors, GPUs, . . .
- Programming patterns: Reduce, scan, embarrassingly parallel, matrix operations, convolution, . . .
- Programming languages: Erlang, sorting network diagrams(?), CUDA, ...

CPSC 418: Last Lecture

MapReduce / Apache Hadoop is

- a new programming pattern,
- designed for large distributed memory clusters with commodity interconnect,
- typically implemented on top of a message passing model,
- amenable to CTA and Amdahl / Gustafson analysis,
- callable from a variety of programming languages.

Outline

- 1 Problem Context: Big Parallelism for Big Data
- 2 MapReduce: The Pattern
- MapReduce: The Implementation
- MapReduce: Results

Portrait of a Data Centre

Sketch of a big data center:

- Tens of thousands of machines, each with its own disk(s).
- Commodity networks and routers.
 - Each machine has a network interface (e.g. 10Gb ethernet)
 - Cross-section bandwidth is much smaller than the number of machines times the per-machine bandwidth.
- Scale is so big that there will be failures: chips, cores, memory, disks, network interfaces, switches, . . .
 - ▶ If the average lifetime of a machine or disk is five years, then 10,000 machine data center will have a failure every four hours.
 - ▶ Even without failure, maintenance will take machines offline.
- Cluster has a robust distributed file system (DFS).
 - Files are accessible from any worker (even with failures).
 - Access to files on the DFS is much slower than to those on worker's local disk.

How to analyse the huge data sets stored on these machines?

Problem Domain: Large-Scale Data Analysis

- Data analysis requires:
 - Fetching the relevant records.
 - Performing analysis of related records.
 - Summarizing the results.
- Example: word frequency in documents
- Example: core curriculum
 - ▶ How do 200-level courses impact success in 400-level courses?
 - Look at all transcripts.
 - Analyze relationships for (2XX, 4YY) pairs.
- Google noted that each such problem was getting its own custom code.
 - All of that code development is expensive.
 - Often required similar rewrites when underlying system changed.

Outline

- Problem Context: Big Parallelism for Big Data
- MapReduce: The Pattern
- MapReduce: The Implementation
- MapReduce: Results

The MapReduce Pattern

Slight generalization of description from [Dean & Ghemawat 2008].

- All data is represented as collections of (Key, Value) pairs.
- map
 - ► For each (Key1, Value1) pair of the input, user code produces a collection of (Key2, Value2) pairs for the output.
- shuffle
 - ▶ All (Key2, Value2) pairs with the same Key2 are combined into a (Key2, [list of Value2]) result and sorted by Key2.
- reduce
 - ► For each (Key2, [list of Value2]), user code produces a (Key2, Value3) result (where Value3 might be a list itself).

<u>Apache Hadoop</u> is an open-source implementation of this basic framework.

MapReduce: Word-Count

Example from [Dean & Ghemawat 2008] revised.

- Input data:
 - Key1 is the document name.
 - Value1 is document text.
- map:
 - Key2 is a word.
 - Value2 is the count of times it appears in the document.
- shuffle:
 - Collect counts from all documents for each word (Word, [list of Counts]).
- reduce:
 - Value3 is the sum of all counts; in other words, the total number of times the word appears in all documents.

MapReduce: Curriculum

- Input data (Key1, Value1):
 - Key1 is the student number for the transcript
 - ▶ Value1 is a list of (CourseNumber, Grade) pairs.
- map: For each 200-level course and for each 400-level course in the transcript:
 - Key2 is the pair (Course200, Course400).
 - Value2 is the pair (Grade200, Grade400).
- shuffle:
 - Collect matching course pairs from all students ((Course200, Course400), [(Grade200, Grade400), (Grade200, Grade400), . . .]).
- reduce:
 - Value3 is (for example) the sample Pearson correlation coefficient r for the data [(Grade200, Grade400), (Grade200, Grade400), . . .].
 - More complex analyses could be performed.

Wait a Minute Now...

But didn't we already study "reduce"?

- The course library's wtree:reduce() in Erlang had leaf(), combine() and root().
- MapReduce at Google has (Key1, Value1), (Key2, Value2), and shuffle?

These patterns have similar names but seek to solve different problems.

 Reduce is a generic name for a functional programming pattern which takes a collection of data and produces some kind of summary information.

Many flavours of Reduce

- In Erlang, wtree:reduce() is designed to spread the computation of a reduction across many workers.
 - Implementation maximizes parallelism for a single reduce operation.
 - ▶ Collection and combination of data occurs in combine () functions.
 - ▶ Note that the leaf() function can perform a map operation before the reduction, so no loss of generality.
- In MapReduce, many independent reductions (one for each Key2) are spread across many workers, but each reduction is performed by a single worker.
 - Implementation emphasizes fault tolerance and disk-based data storage.
 - Collection (but not combination) of data occurs in shuffle step.
 - ▶ If reduction associated with a single *Key2* is too big for a single worker, user must change the intermediate (*Key2*, *Value2*) representation and/or break the problem into multiple MapReduce steps.

MapReduce Programming Model

The user creates a **MapReduce specification object** which provides:

- The map and reduce functions.
- The names of the input and output files.
- Optionally other tuning parameters; for example:
 - Number of map and reduce workers to use.
 - Custom function to combine intermediate results within a map worker to reduce size of intermediate data.
 - A custom hashing function to help with shuffle step.

The user then invokes the MapReduce function.

Outline

- Problem Context: Big Parallelism for Big Data
- MapReduce: The Pattern
- MapReduce: The Implementation
- MapReduce: Results

Execution (Part 1)

- The MapReduce function spawns M map workers, R reduce workers, and one master.
- Each map worker:
 - Is assigned fragment(s) of the input file by the master these fragments are called splits.
 - Reads a (Key1, Value1) record from an assigned split.
 - Runs user map code on that record.
 - Writes the set of (Key2, Value2) pairs to temporary files.
 - Repeats until all records in the split are completed.
 - Repeats until all assigned splits are completed.
 - Notifies the master when it is done.
- Result is a bunch of temporary local files holding (Key2, Value2)
 pairs.

Execution (Part 2)

- Start from temporary files holding (Key2, Value2) pairs.
- Shuffle:
 - ► Each reduce worker is assigned *Key2* value(s).
 - Corresponding Value2 lists are read from map worker's temporary output files and written to reduce worker's temporary input files.
 - ▶ Reduce worker receives (Key2, [list of Value2]) pairs sorted by Key2.
- Each reduce worker:
 - ► Reads a (Key2, [list of Value2]) record from a temporary file.
 - Runs user reduce code on that record.
 - Writes the (Key2, Value3) result to a file on the DFS.
 - Notifies the master when it is done.
- When all the reduce computations are complete, the master sends a message to wake up the user process, and the MapReduce function returns.

Do the MapReduce Shuffle

How do the intermediate results get from the map workers to the reduce workers? Simple version described in [Dean & Ghemawat, 2008]:

- Map workers know the number of reduce workers R.
- Each (Key2, Value2) is written to a different file according to hash(Key2) mod R.
- The master tells the reduce worker which file to read from each map worker.

Later versions of MapReduce utilized more complex or even user-specified hashing; for example, to:

- Better balance size of reduce problems.
- Reduce network traffic and/or simplify sorting during shuffle step.
- Cluster certain Key2 tuples onto the same reduce workers.

Fault Tolerance

Bad things happen: Failed disks, partitioned networks, power shortages, . . .

- Key Idea:
 - The map and reduce operations are based on functional programming ideas: referential transparency and no side-effects.
 - If a worker crashes, it is as if it never existed.
 - ▶ The master can restart the task on another machine.
- The master periodically pings the tasks, and restarts dead ones.
 - Map tasks produce only temporary files, so if a completed map task fails before informing the master then it must be re-executed.
 - ► Reduce tasks produce files in the distributed file system (redundant and fault-tolerant), so no need to re-execute.

Semantics

- Sequential implementation of MapReduce:
 - ▶ Read all of the (Key1, Value1) pairs from the input file.
 - ▶ Write all of the (Key2, [list of Value2]) tuples to an intermediate file.
 - Sort the intermediate file by the Key2 values.
 - ▶ Perform the reduce operation for each *Key2* value and write the results to the output file.
- If the map and reduce functions are deterministic, then the result of MapReduce is the same as a sequential execution.
- If the map and reduce functions are not deterministic, then
 - ▶ If the reduce tasks are non-deterministic, then the result for each *Key2* is the result from some sequential implementation.
 - ► The paper doesn't talk about non-determinism for *map*, but it is probably similar.

Work Stealing

- Sometimes a worker is slow stragglers.
- If the MapReduce task is near completion, the master assigns straggler tasks to idle processors.
- These are called backup tasks.
- Either the original or the backup process can complete the task.
- In practice, this work stealing by backup tasks:
 - Only adds a few percent to the total compute resources used.
 - Can result in substantial performance improvements: The paper reported a 44% slow-down when the sort benchmark was run without backup tasks.

Performance Issues

- The master attempts to schedule map tasks on the processor whose local disk holds the split being processed, or are nearby (by the network connections).
- Shuffle moves data from many map tasks to many reduce tasks.
 - Easily saturates the cross-section bandwidth of the network.
- For good performance, the map tasks should be filters that output much less data than they read.
 - ► Often not true of the "natural" intermediate representation (such as curriculum problem above).
 - ► Fewer distinct *Key2* values means less parallelism in reduce tasks.
- Can often reduce intermediate data size by partial reduction in the map workers.
 - Generates same result if reduce operation is associative and commutative.

Outline

- Problem Context: Big Parallelism for Big Data
- MapReduce: The Pattern
- MapReduce: The Implementation
- MapReduce: Results

MapReduce is Designed for BIG Data

- task must somehow accommodate large overhead of remote operations.
 - Communication between standard linux machines with generic networks takes milliseconds.
 - Reading large disk files takes seconds.
- In other words, λ is a few orders of magnitude larger.
- For example: If the task is disk-limited and harnessing a few thousand disks provides the necessary disk bandwidth.
 - ▶ Think of it as "disk parallelism" instead of "CPU parallelism".
 - Note: big-data companies like Amazon, Facebook and Google are moving to using FLASH memory and DRAM instead of disks, exactly because of these I/O bottlenecks.
- For example: If your problem has a big compute to disk access (CDA?) ratio on a big data set.
 - Big matrices, big convolutions, ...
 - Algorithms designed to run "out-of-core".

Results (Part 1)

Achieves impressive performance on massive data sets 2008–2013(?)

- Report in [Dean & Ghemawat, 2008]: Good performance on ~ 2000 machines: grep and sort work through 10¹⁰ 100-byte records (1TB) in minutes.
- \bullet Google estimates \sim 20PB / day in total MapReduce processing in January 2008.
- Google research blog reports sorting 10¹³ 100-byte records (1PB) on \sim 4000 machines (and \sim 48,000 disks) in six hours in November 2008, then 33 minutes for 1 PB or 6 hours for 10 PB on \sim 8000 machines in September 2011.
- Open source implementation in Hadoop widely available as a cloud service.
- Many example algorithms documented; for example, search for "map reduce" on http://scholar.google.ca.

Results (Part 2)

Big data processors are now moving away from MapReduce.

- "We don't really use MapReduce anymore" [Urs Hölzle, senior vice president of technical infrastructure at Google speaking at Google I/O conference in 2014]
- MapReduce framework emphasizes batch processing of data residing in distributed file system
 - Limits algorithm flexibility and efficiency.
 - Shift toward streaming algorithms to better overlap compute and data access, and to handle constantly changing data.
- Machine learning project Apache Mahout is shifting away from MapReduce algorithms to alternatives such as Apache Spark.
 - Worth noting: Spark also uses a functional programming model with referential transparency.

Summary

- MapReduce is a parallel programming pattern.
 - ▶ Input data are collections of (Key, Value) pairs.
 - ► User provides **map** to take input (Key1, Value1) pairs to intermediate (Key2, Value2) pairs.
 - Shuffle step collects intermediate data into (Key2, [list of Value2]) pairs and sorts it by Key2.
 - User provides reduce to take sorted (Key2, [list of Value2]) pairs into (Key2, Value3) pairs.
- Details of the parallel implementation are handled by the MapReduce API:
 - Creating workers processes, delivering input and output files, shuffling intermediate data between map and reduce workers.
 - Handling failures and slow nodes.
- Performance is often bandwidth limited.
 - ▶ User must choose (Key2, Value2) representation so that map generates less intermediate data.
 - System must take advantage of data locality.

Review: Properties of MapReduce

- How does MapReduce distribute work between map tasks?
- How does MapReduce distribute work between reduce tasks?
- How does MapReduce handle machine, network or other failures?
- How does MapReduce handle slow (i.e. straggler) machines?
- What are the requirements for the type-signatures of the *map* and *reduce* functions in a map-reduce?

Review: Example of a MapReduce Problem

I want to fly from Vancouver to Timbuktu. There are no direct flights, so I want to find the fastest route with one stop. How could I do this using MapReduce?

• Input data is a table of airline flights of the form:

```
(DepartCity, DepartTime, ArriveCity, ArriveTime)
```

- Hint: use the intermediate city as Key2.
- For simplicity, assume that all times are GMT (no need for time-zone conversion).
- How does map filter out irrelevant flights?
- ▶ How does *reduce* combine its list of *Value2*?