Linear Algebra Libraries and CUDA

Mark Greenstreet and lan M. Mitchell

CpSc 418 — March 23, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & lan M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 1/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Table of Contents

0 Motivation

@ BLAS

© Using BLAS
@ In General
@ On CUDA GPUs

e Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 2/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Outline

0 Motivation

Greenstreet & Mitchell Linear Algebra Libraries and CUDA


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Once Upon a Time. ..

@ Numerical calculation has been a key application since the
earliest days of computing.

» The term “computer” has been used for centuries to refer to a

person performing mathematical calculations according to a fixed
set of rules.

» One of the earliest electronic general purpose computers (1946)
was the Electronic Numerical Integrator and Computer (ENIAC)
designed primarily to calculate artillery firing tables for the US Army.

@ High level programming language and compiler development was
spurred by Fortran (“formula translator”) starting in the mid-1950s.

@ Turing Award for 1989 went to William Kahan for his work “making
the world safe for numerical computations.”

» |EEE standard for floating point arithmetic (IEEE 754) now provides
a common, reproducible and robust format across virtually all
computing platforms.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 4/20


https://en.wikipedia.org/wiki/Human_computer
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/William_Kahan
http://amturing.acm.org/award_winners/kahan_1023746.cfm
http://amturing.acm.org/award_winners/kahan_1023746.cfm
https://en.wikipedia.org/wiki/IEEE_floating_point
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Linear Algebra is Everywhere
Many numerical algorithms are designed around linear algebra
operations.

@ By late 1960s it was common in the numerical computing
community to implement these operations as separate
“subprograms”

@ ACM-SIGNUM project 1973-1977 set out to design what we would
now call a common API to these most common routines.

@ Design process and outcomes documented in a series of papers
in ACM Trans. Mathematical Software (ACM-TOMS):

» Lawson et al, “Basic linear algebra subprograms for Fortran usage,’
ACM TOMS 5(3): 308-323 (Sept. 1979).

» Dongarra et al, “An Extended Set of FORTRAN Basic Linear
Algebra Subprograms,” ACM TOMS 14(1): 1—17 (March 1988).

» Dongarra et al, “A Set of Level 3 Basic Linear Algebra
Subprograms,” ACM TOMS 16(1): 1-17 (March 1990).

» Blackford et al, “An Updated Set of Basic Linear Algebra
Subprograms (BLAS),” ACM TOMS 28(2): 135—-151 (June 2002).

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 5/20


https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/567806.567807
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Outline

@ BLAS

Greenstreet & Mitchell Linear Algebra Libraries and CUDA


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Basic Linear Algebra Subprograms (BLAS)

Authors and contributors anticipated many benefits:
@ Encourages “structured programming”: Modularization of common
code sequences.

@ Code will be more self-documenting: Other programmers will
recognize the subprogram names.

@ Subprograms can be coded in assembly to improve efficiency, and
if the majority of computational effort is within the subprograms
that will significantly benefit the whole application.

@ Subprograms can be coded by experts to deal with “algorithmic
and implementation subtleties.”

@ Code becomes portable while still maintaining efficiency.

While the details may differ, similar benefits still accrue today.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 7/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Levels of BLAS

BLAS specification consists of operations at one of three “levels”:
@ BLAS-1: Vector-vector operations (scalar vector product, vector
sum, dot product, etc.).

» [Lawson et al, 1979].
» Performs O(n) operations on O(n) data.

@ BLAS-2: Matrix-vector operations (matrix-vector product,
triangular solves)

» [Dongarra et al, 1988].
» Performs O(n?) operations on O(n?) data.

@ BLAS-3: Matrix-matrix operations (matrix-matrix product,
triangular solves with multiple right-hand sides)

» [Dongarra et al, 1990].
» Performs O(n®) operations on O(n?) data.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 8/20


http://www.netlib.org/blas/
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Types of Operands

@ Provides for either “single precision” or “double precision” floating
point arithmetic.
» Support for complex variables (real + imaginary components).
» Note that BLAS does not mandate IEEE FP standard: Definition of
precision depends on the platform.
@ Initial versions focused on dense or banded matrices.
» Special cases for symmetric, Hermitian (complex version of
symmetry) or triangular form.
@ Extended in [Blackford et al, 2002]:

» Sparse matrices.
» Extended and mixed precision arithmetic.
» A number of new routines whose importance was discovered
during implementation of LAPACK:
* Commonly used operations, such as matrix norm.
* Slight generalizations of existing routines.
* Perform two existing routines in a single call to reduce memory traffic.

@ Many other extensions / implementations have been described.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 9/20


https://doi.org/10.1145/567806.567807
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Outline

© Using BLAS
@ In General
@ On CUDA GPUs

Greenstreet & Mitchell Linear Algebra Libraries and CUDA


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Fortran? Are You Kidding Me?

@ At the time of the initial design of BLAS, Fortran was by far the
dominant language of numerical computing.

» The FORTRAN 77 standard had just been adopted
» (the first BLAS definition was non-conforming.)

@ Many limitations and idiosyncracies can be avoided, such as:

Only Fortran bindings.

ALL CAPITAL LETTERS for symbols.
Static allocation of arrays.

1-based indexing.

vV vyVvVYyy

@ Some Fortran features remain in some implementations, such as:

» Function names and arguments are incomprehensibly short.
» Column-major ordering of data in matrices.
» Arguments are pass by reference (even some scalars).

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 11/20


https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fortran#FORTRAN_77
https://www.fortran.com/F77_std/f77_std.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Decyphering BLAS Function Names
Function names in BLAS follow a pattern.

@ Often a prefix, such as BLAS_or cblas..

@ One character to denote data type; for example:

> s: single precision.
» d: double precision.

@ Operations involving a matrix add two characters to denote matrix
type; for example:

» ge: general dense matrix.
» tb: triangular banded.

@ Short mnemonic string to denote operation; for example

» axpy: ax plus y.
» mm: matrix multiply.

@ Put them all together:

» BLAS_SAXPY (): Fortran single precision vector summation.
» cblas_dgemm () : C double precision dense matrix product.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 12/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Decyphering BLAS Function Arguments (part 1)
Consider matrix product C = aA°°B°P + 3C implemented by

cblas_sgemm(enum blas_order_type layout,
enum blas_trans_type transa,
enum blas_trans_type transb,

int m,
float
float
float
float
float

int n, int k,
alpha,

*a, 1int lda,
*b, int 1db,
beta,
*c, 1int 1ldc)

@ layout specifies either column-major or row-major.
@ transa specifies whether to use A, AT or AF.

» Same for

@ m, n, k specify matrix sizes: Ais m x k, Bis k x n, Cis m x n.

transb and B.

@ alpha and beta specify scalar multipliers.

» Some implementations may require pass by reference.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018

13/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Decyphering BLAS Function Arguments (part 2)

Consider matrix product C = aA°°B°P + 3C implemented by

cblas_sgemm (enum blas_order_type layout,
enum blas_trans_type transa,
enum blas_trans_type transb,
int m, int n, int k,
float alpha,
float =a, int 1lda,
float b, int 1db,
float beta,
float xc, int 1ldc)

@ a is a pointer to array for A and 1da is the distance between the
start of consecutive columns (for column-major) or rows (for
row-major).

» Same for b, 1db and B.
» Same for c, 1dc and C.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 14/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

What’s with the 1dx Arguments?

@ BLAS routines allow for data which is not stored continuously.
@ These 1d« arguments are called the stride.
@ For vectors, striding allows access to rows or columns of a matrix.

» Consider the data in an m x n column-major matrix.
» A column has stride 1 and length m.
» A row has stride m and length n.

@ For matrices, striding allows access to submatrices; for example,

Consider the data in an m x n column-major matrix a.
We want the p x g block starting at row i and column 7.
Data starts at sa[i + j*m]

Data has size p by q.

Data has stride m.

vV vy vy VvYyy

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 15/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

CUDA and BLAS

@ The cuBLAS library provides an API for running BLAS routines on
CUDA GPUs.

@ Basic pattern of use:

» Initialize the cuBLAS library and allocate hardware resources using
cublasCreate ().

» Allocate memory using cudaMalloc ().

» Copy data from host to GPU using cublasSetVector () or

cublasSetMatrix ().

» Perform BLAS operations; for example cublasSaxpy () or
cublasSgemm ().

» Copy data from GPU to host using cublasGetVector () Or
cublasGetMatrix ().

» Release memory using cudaFree ().
» Release hardware resources using cublasDestroy ().

@ Example(s).

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 16/20


https://developer.nvidia.com/cublas
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Notes on cuBLAS

@ Always uses column-major ordering

» Be careful with your data layout.
@ Always uses 1-based indexing.

» Usually irrelevant since you do not index into arrays through BLAS.
@ All cuBLAS code is called from the host.

» You do not write any kernel code.
» You do not have to worry about grids, blocks, shared memory, ...

@ Need to link against cuBLAS library.

» Check that environment variable LD_LIBRARY_PATH includes
CUDA library directory.
» (/cs/local/lib/pkg/cudatoolkit/1ib64 On 1inXX

machines.)
» Add -1cublas to compilation command.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 17/20


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Efficiency of cuBLAS

Matrix multiply two random square matrices. Data on current GPUs
(GTX 1060 3GB — CC 6.1). All times in seconds.

512 1024 2048 3072 4096
s418_cpu 0.19 1.6 72 240 -
s418_gpu 0.0023 0.012 0.093 0.28 0.63
cublas_sgemm 0.00033 0.0014 0.0098 0.031 0.065

@ Brute force CPU function s418_cpu achieves ~ 1.3 (n=512) to
~ 0.22 (n = 4096) GFLOPS

@ Brute force GPU kernel s418_gpu achieves 100 — 200 GFLOPS.
@ cublas_sgemm achieves 750 — 2000 GFLOPS.

See mmult-compare code.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 18/20


http://www.ugrad.cs.ubc.ca/2017-2/lecture/03-23-BLAS/mmult-compare.zip
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Outline

e Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

Other Numerical Libraries

@ Linear Algebra PACKage (LAPACK).

» Implements the more complex linear algebra operations.
» Designed to call BLAS for basic computational steps.

@ For your CPU:

» Intel’s Math Kernel Library (MKL) implements core functions from
BLAS, LAPACK, FFTs, etc.

» Automatically Tuned Linear Algebra Software (ATLAS) generates a
BLAS library tuned to a machine’s memory hierarchy.

@ Many other accelerated libraries available for CUDA devices.

» For example: cuFFT, cuSPARSE, cuRAND, cuDNN, MAGMA
(supports LAPACK), ...

If there is a library, you should at least try it.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 — Mar. 23, 2018 20/20


http://www.netlib.org/lapack/
http://software.intel.com/en-us/intel-mkl
https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software
https://developer.nvidia.com/gpu-accelerated-libraries
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

	Motivation
	BLAS
	Using BLAS
	In General
	On CUDA GPUs

	Other numerical libraries

