Linear Algebra Libraries and CUDA

Mark Greenstreet and Ian M. Mitchell

CpSc 418 - March 23, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Table of Contents

- In General
- On CUDA GPUs

Outline

2 BLAS

Once Upon a Time...

- Numerical calculation has been a key application since the earliest days of computing.
 - The term <u>"computer</u>" has been used for centuries to refer to a person performing mathematical calculations according to a fixed set of rules.
 - One of the earliest electronic general purpose computers (1946) was the <u>Electronic Numerical Integrator and Computer</u> (ENIAC) designed primarily to calculate artillery firing tables for the US Army.
- High level programming language and compiler development was spurred by <u>Fortran</u> ("formula translator") starting in the mid-1950s.
- Turing Award for 1989 went to William Kahan for his work "making the world safe for numerical computations."
 - IEEE standard for floating point arithmetic (IEEE 754) now provides a common, reproducible and robust format across virtually all computing platforms.

Linear Algebra is Everywhere

Many numerical algorithms are designed around linear algebra operations.

- By late 1960s it was common in the numerical computing community to implement these operations as separate "subprograms"
- ACM-SIGNUM project 1973-1977 set out to design what we would now call a common API to these most common routines.
- Design process and outcomes documented in a series of papers in ACM Trans. Mathematical Software (ACM-TOMS):
 - Lawson et al, "Basic linear algebra subprograms for Fortran usage," ACM TOMS 5(3): 308–323 (Sept. 1979).
 - Dongarra et al, "An Extended Set of FORTRAN Basic Linear Algebra Subprograms," ACM TOMS 14(1): 1–17 (March 1988).
 - Dongarra et al, "A Set of Level 3 Basic Linear Algebra Subprograms," ACM TOMS 16(1): 1–17 (March 1990).
 - <u>Blackford et al</u>, "An Updated Set of Basic Linear Algebra Subprograms (BLAS)," ACM TOMS 28(2): 135–151 (June 2002).

Basic Linear Algebra Subprograms (BLAS)

Authors and contributors anticipated many benefits:

- Encourages "structured programming": Modularization of common code sequences.
- Code will be more self-documenting: Other programmers will recognize the subprogram names.
- Subprograms can be coded in assembly to improve efficiency, and if the majority of computational effort is within the subprograms that will significantly benefit the whole application.
- Subprograms can be coded by experts to deal with "algorithmic and implementation subtleties."
- Code becomes portable while still maintaining efficiency.

While the details may differ, similar benefits still accrue today.

Levels of BLAS

BLAS specification consists of operations at one of three "levels":

- BLAS-1: Vector-vector operations (scalar vector product, vector sum, dot product, etc.).
 - [Lawson et al, 1979].
 - Performs $\mathcal{O}(n)$ operations on $\mathcal{O}(n)$ data.
- BLAS-2: Matrix-vector operations (matrix-vector product, triangular solves)
 - [Dongarra et al, 1988].
 - Performs $\mathcal{O}(n^2)$ operations on $\mathcal{O}(n^2)$ data.
- BLAS-3: Matrix-matrix operations (matrix-matrix product, triangular solves with multiple right-hand sides)
 - [Dongarra et al, 1990].
 - Performs $\mathcal{O}(n^3)$ operations on $\mathcal{O}(n^2)$ data.

Types of Operands

- Provides for either "single precision" or "double precision" floating point arithmetic.
 - Support for complex variables (real + imaginary components).
 - Note that BLAS does not mandate IEEE FP standard: Definition of precision depends on the platform.
- Initial versions focused on dense or banded matrices.
 - Special cases for symmetric, Hermitian (complex version of symmetry) or triangular form.
- Extended in [Blackford et al, 2002]:
 - Sparse matrices.
 - Extended and mixed precision arithmetic.
 - A number of new routines whose importance was discovered during implementation of LAPACK:
 - * Commonly used operations, such as matrix norm.
 - * Slight generalizations of existing routines.
 - Perform two existing routines in a single call to reduce memory traffic.
- Many other extensions / implementations have been described.

Outline

Fortran? Are You Kidding Me?

- At the time of the initial design of BLAS, <u>Fortran</u> was by far the dominant language of numerical computing.
 - The FORTRAN 77 standard had just been adopted
 - (the first BLAS definition was non-conforming.)
- Many limitations and idiosyncracies can be avoided, such as:
 - Only Fortran bindings.
 - ALL CAPITAL LETTERS for symbols.
 - Static allocation of arrays.
 - 1-based indexing.
- Some Fortran features remain in some implementations, such as:
 - Function names and arguments are incomprehensibly short.
 - Column-major ordering of data in matrices.
 - Arguments are pass by reference (even some scalars).

Decyphering BLAS Function Names

Function names in BLAS follow a pattern.

- Often a prefix, such as **BLAS_** or cblas_.
- One character to denote data type; for example:
 - s: single precision.
 - d: double precision.
- Operations involving a matrix add two characters to denote matrix type; for example:
 - ge: general dense matrix.
 - tb: triangular banded.
- Short mnemonic string to denote operation; for example
 - axpy: ax plus y.
 - mm: matrix multiply.
- Put them all together:
 - ► BLAS_SAXPY (): Fortran single precision vector summation.
 - cblas_dgemm(): C double precision dense matrix product.

Decyphering BLAS Function Arguments (part 1) Consider matrix product $C = \alpha A^{op}B^{op} + \beta C$ implemented by

```
cblas_sgemm(enum blas_order_type layout,
 enum blas_trans_type transa,
 enum blas_trans_type transb,
 int m, int n, int k,
 float alpha,
 float *a, int lda,
 float *b, int ldb,
 float beta,
 float *c, int ldc)
```

- layout specifies either column-major or row-major.
- transa specifies whether to use A, A^T or A^H .
 - Same for transb and B.
- m, n, k specify matrix sizes: A is $m \times k$, B is $k \times n$, C is $m \times n$.
- alpha and beta specify scalar multipliers.
 - Some implementations may require pass by reference.

Decyphering BLAS Function Arguments (part 2)

Consider matrix product $C = \alpha A^{op} B^{op} + \beta C$ implemented by

```
cblas_sgemm(enum blas_order_type layout,
 enum blas_trans_type transa,
 enum blas_trans_type transb,
 int m, int n, int k,
 float alpha,
 float *a, int lda,
 float *b, int ldb,
 float beta,
 float *c, int ldc)
```

- a is a pointer to array for A and lda is the distance between the start of consecutive columns (for column-major) or rows (for row-major).
 - Same for b, 1db and B.
 - Same for c, ldc and C.

What's with the ld* Arguments?

- BLAS routines allow for data which is not stored continuously.
- These ld* arguments are called the *stride*.
- For vectors, striding allows access to rows or columns of a matrix.
 - Consider the data in an $m \times n$ column-major matrix.
 - A column has stride 1 and length m.
 - A row has stride m and length n.
- For matrices, striding allows access to submatrices; for example,
 - Consider the data in an $m \times n$ column-major matrix a.
 - We want the $p \times q$ block starting at row i and column j.
 - Data starts at &a[i + j*m]
 - Data has size p by q.
 - Data has stride m.

CUDA and BLAS

- The <u>cuBLAS</u> library provides an API for running BLAS routines on CUDA GPUs.
- Basic pattern of use:
 - Initialize the cuBLAS library and allocate hardware resources using cublasCreate().
 - Allocate memory using cudaMalloc().
 - Copy data from host to GPU using cublasSetVector() or cublasSetMatrix().
 - Perform BLAS operations; for example cublasSaxpy() or cublasSgemm().
 - Copy data from GPU to host using cublasGetVector() or cublasGetMatrix().
 - Release memory using cudaFree().
 - Release hardware resources using cublasDestroy().
- Example(s).

Notes on cuBLAS

- Always uses column-major ordering
 - Be careful with your data layout.
- Always uses 1-based indexing.
 - Usually irrelevant since you do not index into arrays through BLAS.
- All cuBLAS code is called from the host.
 - You do not write any kernel code.
 - You do not have to worry about grids, blocks, shared memory, ...
- Need to link against cuBLAS library.
 - Check that environment variable LD_LIBRARY_PATH includes CUDA library directory.
 - (/cs/local/lib/pkg/cudatoolkit/lib64 on linXX
 machines.)
 - Add -lcublas to compilation command.

Efficiency of cuBLAS

Matrix multiply two random square matrices. Data on current GPUs (GTX 1060 3GB – CC 6.1). All times in seconds.

	512	1024	2048	3072	4096
s418_cpu	0.19	1.6	72	240	_
s418_gpu	0.0023	0.012	0.093	0.28	0.63
cublas_sgemm	0.00033	0.0014	0.0098	0.031	0.065

- Brute force CPU function s418_cpu achieves ~ 1.3 (n = 512) to ~ 0.22 (n = 4096) GFLOPS
- Brute force GPU kernel s418_gpu achieves 100 200 GFLOPS.
- cublas_sgemm achieves 750 2000 GFLOPS.

See mmult-compare code.

Outline

Other Numerical Libraries

- Linear Algebra PACKage (<u>LAPACK</u>).
 - Implements the more complex linear algebra operations.
 - Designed to call BLAS for basic computational steps.
- For your CPU:
 - Intel's Math Kernel Library (<u>MKL</u>) implements core functions from BLAS, LAPACK, FFTs, etc.
 - Automatically Tuned Linear Algebra Software (<u>ATLAS</u>) generates a BLAS library tuned to a machine's memory hierarchy.
- Many other accelerated libraries available for CUDA devices.
 - For example: cuFFT, cuSPARSE, cuRAND, cuDNN, MAGMA (supports LAPACK), ...

If there is a library, you should at least try it.