
Linear Algebra Libraries and CUDA

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – March 23, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Table of Contents

1 Motivation

2 BLAS

3 Using BLAS
In General
On CUDA GPUs

4 Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 2 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Outline

1 Motivation

2 BLAS

3 Using BLAS
In General
On CUDA GPUs

4 Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 3 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Once Upon a Time. . .

Numerical calculation has been a key application since the
earliest days of computing.

I The term “computer” has been used for centuries to refer to a
person performing mathematical calculations according to a fixed
set of rules.

I One of the earliest electronic general purpose computers (1946)
was the Electronic Numerical Integrator and Computer (ENIAC)
designed primarily to calculate artillery firing tables for the US Army.

High level programming language and compiler development was
spurred by Fortran (“formula translator”) starting in the mid-1950s.
Turing Award for 1989 went to William Kahan for his work “making
the world safe for numerical computations.”

I IEEE standard for floating point arithmetic (IEEE 754) now provides
a common, reproducible and robust format across virtually all
computing platforms.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 4 / 20

https://en.wikipedia.org/wiki/Human_computer
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/William_Kahan
http://amturing.acm.org/award_winners/kahan_1023746.cfm
http://amturing.acm.org/award_winners/kahan_1023746.cfm
https://en.wikipedia.org/wiki/IEEE_floating_point
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Linear Algebra is Everywhere
Many numerical algorithms are designed around linear algebra
operations.

By late 1960s it was common in the numerical computing
community to implement these operations as separate
“subprograms”
ACM-SIGNUM project 1973-1977 set out to design what we would
now call a common API to these most common routines.
Design process and outcomes documented in a series of papers
in ACM Trans. Mathematical Software (ACM-TOMS):

I Lawson et al, “Basic linear algebra subprograms for Fortran usage,”
ACM TOMS 5(3): 308–323 (Sept. 1979).

I Dongarra et al, “An Extended Set of FORTRAN Basic Linear
Algebra Subprograms,” ACM TOMS 14(1): 1–17 (March 1988).

I Dongarra et al, “A Set of Level 3 Basic Linear Algebra
Subprograms,” ACM TOMS 16(1): 1–17 (March 1990).

I Blackford et al, “An Updated Set of Basic Linear Algebra
Subprograms (BLAS),” ACM TOMS 28(2): 135–151 (June 2002).

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 5 / 20

https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/567806.567807
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Outline

1 Motivation

2 BLAS

3 Using BLAS
In General
On CUDA GPUs

4 Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Basic Linear Algebra Subprograms (BLAS)

Authors and contributors anticipated many benefits:

Encourages “structured programming”: Modularization of common
code sequences.
Code will be more self-documenting: Other programmers will
recognize the subprogram names.
Subprograms can be coded in assembly to improve efficiency, and
if the majority of computational effort is within the subprograms
that will significantly benefit the whole application.
Subprograms can be coded by experts to deal with “algorithmic
and implementation subtleties.”
Code becomes portable while still maintaining efficiency.

While the details may differ, similar benefits still accrue today.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Levels of BLAS

BLAS specification consists of operations at one of three “levels”:

BLAS-1: Vector-vector operations (scalar vector product, vector
sum, dot product, etc.).

I [Lawson et al, 1979].
I Performs O(n) operations on O(n) data.

BLAS-2: Matrix-vector operations (matrix-vector product,
triangular solves)

I [Dongarra et al, 1988].
I Performs O(n2) operations on O(n2) data.

BLAS-3: Matrix-matrix operations (matrix-matrix product,
triangular solves with multiple right-hand sides)

I [Dongarra et al, 1990].
I Performs O(n3) operations on O(n2) data.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 8 / 20

http://www.netlib.org/blas/
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Types of Operands
Provides for either “single precision” or “double precision” floating
point arithmetic.

I Support for complex variables (real + imaginary components).
I Note that BLAS does not mandate IEEE FP standard: Definition of

precision depends on the platform.

Initial versions focused on dense or banded matrices.
I Special cases for symmetric, Hermitian (complex version of

symmetry) or triangular form.

Extended in [Blackford et al, 2002]:
I Sparse matrices.
I Extended and mixed precision arithmetic.
I A number of new routines whose importance was discovered

during implementation of LAPACK:
F Commonly used operations, such as matrix norm.
F Slight generalizations of existing routines.
F Perform two existing routines in a single call to reduce memory traffic.

Many other extensions / implementations have been described.
Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 9 / 20

https://doi.org/10.1145/567806.567807
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Outline

1 Motivation

2 BLAS

3 Using BLAS
In General
On CUDA GPUs

4 Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Fortran? Are You Kidding Me?

At the time of the initial design of BLAS, Fortran was by far the
dominant language of numerical computing.

I The FORTRAN 77 standard had just been adopted
I (the first BLAS definition was non-conforming.)

Many limitations and idiosyncracies can be avoided, such as:
I Only Fortran bindings.
I ALL CAPITAL LETTERS for symbols.
I Static allocation of arrays.
I 1-based indexing.

Some Fortran features remain in some implementations, such as:
I Function names and arguments are incomprehensibly short.
I Column-major ordering of data in matrices.
I Arguments are pass by reference (even some scalars).

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 11 / 20

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fortran#FORTRAN_77
https://www.fortran.com/F77_std/f77_std.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Decyphering BLAS Function Names
Function names in BLAS follow a pattern.

Often a prefix, such as BLAS or cblas .
One character to denote data type; for example:

I s: single precision.
I d: double precision.

Operations involving a matrix add two characters to denote matrix
type; for example:

I ge: general dense matrix.
I tb: triangular banded.

Short mnemonic string to denote operation; for example
I axpy: ax plus y .
I mm: matrix multiply.

Put them all together:
I BLAS SAXPY(): Fortran single precision vector summation.
I cblas dgemm(): C double precision dense matrix product.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Decyphering BLAS Function Arguments (part 1)
Consider matrix product C = αAopBop + βC implemented by

cblas sgemm(enum blas order type layout,
enum blas trans type transa,
enum blas trans type transb,
int m, int n, int k,
float alpha,
float *a, int lda,
float *b, int ldb,
float beta,
float *c, int ldc)

layout specifies either column-major or row-major.
transa specifies whether to use A, AT or AH .

I Same for transb and B.

m, n, k specify matrix sizes: A is m × k , B is k × n, C is m × n.
alpha and beta specify scalar multipliers.

I Some implementations may require pass by reference.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Decyphering BLAS Function Arguments (part 2)

Consider matrix product C = αAopBop + βC implemented by

cblas sgemm(enum blas order type layout,
enum blas trans type transa,
enum blas trans type transb,
int m, int n, int k,
float alpha,
float *a, int lda,
float *b, int ldb,
float beta,
float *c, int ldc)

a is a pointer to array for A and lda is the distance between the
start of consecutive columns (for column-major) or rows (for
row-major).

I Same for b, ldb and B.
I Same for c, ldc and C.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


What’s with the ld* Arguments?

BLAS routines allow for data which is not stored continuously.
These ld* arguments are called the stride.
For vectors, striding allows access to rows or columns of a matrix.

I Consider the data in an m × n column-major matrix.
I A column has stride 1 and length m.
I A row has stride m and length n.

For matrices, striding allows access to submatrices; for example,
I Consider the data in an m × n column-major matrix a.
I We want the p × q block starting at row i and column j.
I Data starts at &a[i + j*m]
I Data has size p by q.
I Data has stride m.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


CUDA and BLAS

The cuBLAS library provides an API for running BLAS routines on
CUDA GPUs.
Basic pattern of use:

I Initialize the cuBLAS library and allocate hardware resources using
cublasCreate().

I Allocate memory using cudaMalloc().
I Copy data from host to GPU using cublasSetVector() or
cublasSetMatrix().

I Perform BLAS operations; for example cublasSaxpy() or
cublasSgemm().

I Copy data from GPU to host using cublasGetVector() or
cublasGetMatrix().

I Release memory using cudaFree().
I Release hardware resources using cublasDestroy().

Example(s).

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 16 / 20

https://developer.nvidia.com/cublas
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Notes on cuBLAS

Always uses column-major ordering
I Be careful with your data layout.

Always uses 1-based indexing.
I Usually irrelevant since you do not index into arrays through BLAS.

All cuBLAS code is called from the host.
I You do not write any kernel code.
I You do not have to worry about grids, blocks, shared memory, . . .

Need to link against cuBLAS library.
I Check that environment variable LD LIBRARY PATH includes

CUDA library directory.
I (/cs/local/lib/pkg/cudatoolkit/lib64 on linXX

machines.)
I Add -lcublas to compilation command.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 17 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Efficiency of cuBLAS

Matrix multiply two random square matrices. Data on current GPUs
(GTX 1060 3GB – CC 6.1). All times in seconds.

512 1024 2048 3072 4096
s418 cpu 0.19 1.6 72 240 –
s418 gpu 0.0023 0.012 0.093 0.28 0.63
cublas sgemm 0.00033 0.0014 0.0098 0.031 0.065

Brute force CPU function s418 cpu achieves ∼ 1.3 (n = 512) to
∼ 0.22 (n = 4096) GFLOPS
Brute force GPU kernel s418 gpu achieves 100− 200 GFLOPS.
cublas sgemm achieves 750− 2000 GFLOPS.

See mmult-compare code.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 18 / 20

http://www.ugrad.cs.ubc.ca/2017-2/lecture/03-23-BLAS/mmult-compare.zip
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Outline

1 Motivation

2 BLAS

3 Using BLAS
In General
On CUDA GPUs

4 Other numerical libraries

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 19 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018


Other Numerical Libraries

Linear Algebra PACKage (LAPACK).
I Implements the more complex linear algebra operations.
I Designed to call BLAS for basic computational steps.

For your CPU:
I Intel’s Math Kernel Library (MKL) implements core functions from

BLAS, LAPACK, FFTs, etc.
I Automatically Tuned Linear Algebra Software (ATLAS) generates a

BLAS library tuned to a machine’s memory hierarchy.

Many other accelerated libraries available for CUDA devices.
I For example: cuFFT, cuSPARSE, cuRAND, cuDNN, MAGMA

(supports LAPACK), . . .

If there is a library, you should at least try it.

Greenstreet & Mitchell Linear Algebra Libraries and CUDA CpSc 418 – Mar. 23, 2018 20 / 20

http://www.netlib.org/lapack/
http://software.intel.com/en-us/intel-mkl
https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software
https://developer.nvidia.com/gpu-accelerated-libraries
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2018

	Motivation
	BLAS
	Using BLAS
	In General
	On CUDA GPUs

	Other numerical libraries

