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Convolution in One Dimension
Assume input array {xi}i=n−1

i=0 and output array {yi}i=n−1
i=0 .

Each yi is a weighted sum of xi for i ∈ [i − k , i + k ].
Mathematically

yi =
`=+k∑
`=−k

w`xi+` for all i = 0, . . . ,n

where {w`}`=+k
`=−k and k are given.

I Weights {w`} called the convolution “kernel”, “mask” or “stencil”.
I Mask contains 2k + 1 elements with k � n.
I Value k called “half-width” or (confusingly) “width”.

Graphically, see K&H figures 7.1 and 7.2.
I The input {xi} is stored in N.
I The output {yi} is stored in P.
I The mask {w`} is stored in M.

Need to handle the cases when i + ` < 0 or i + ` >= n.
I Typically substitute xi = 0 for these values of i .
I See K&H figure 7.3.
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Convolution in Higher Dimensions

In two dimensions:
Mathematically

yi,j =

`1=+k1∑
`1=−k1

`2=+k2∑
`2=−k2

w`1,`2xi+`1,j+`2

See K&H figures 7.4 and 7.5.

Conceptually easy to extend to higher dimension.
Number of weights grows quickly with dimension.
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Implementation
Basic CPU implementation:

Double iteration over output values and mask entries.

int stencil half width = stencil width / 2;
for(int i = 0; i < n; i++) {
float sum = 0.0;
for(int k = 0; k < stencil width; k++) {
int index = i + k - stencil half width;
if((index >= 0) && (index < n))

sum += stencil[k] * data in[index];
}
data out[i] = sum;

}

Basic GPU implementation:
Assign one thread to each output value.
Iterate over mask entries.
see K&H figure 7.6.
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CGMA of Basic Convolution Implementation

Consider 1D convolution and assume data size n is much bigger than
mask size k (to justify ignoring boundary behaviour).

Examine innermost line in K&H figure 7.8:
Pvalue += N[N start point + j] * M[j];

How many elements are loaded from memory?
How many operations are performed?
What is the CGMA?

How can we do better?
How many threads read each element of N?
How many threads read each element of M?
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Shared Memory

Remember from GPU Performance Idiosyncracies:

Conceptually: A small (48KB in all production CCs) amount of
memory shared between the threads in a block.

I Slower than registers but much faster than global memory.
I Must be explicitly allocated and loaded by kernels.
I Some memory coherence guarantees; for example, after

syncthreads().
I Typical uses: Rapid access to selected array data and/or

communication of data between threads.
Practically: A small (96KB in CC 6.1) amount of memory with low
latency and high bandwidth available to each SM.

I Same latency, same (or higher) bandwidth as L1 cache.
I Divided into 32 banks, each of which can serve a load or store

every cycle.
I For maximum efficiency: Threads in a warp either all access the

same location in a bank or access locations in different banks.
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Tiling
A common GPU programming pattern for data that is accessed by
multiple threads:

1 Divide the full set of data into “tiles”.
2 Load a small number of tiles into shared memory.

I Number of tiles required at one time is determined by the algorithm.
I Size of tiles is determined by the number required and size of

shared memory.
I Choosing smaller blocks allows more shared memory / thread but

often requires more overhead.
3 Do as much work as possible on those tiles.
4 Save results.
5 Repeat from step 2 until all data is processed.

Examples
Matrix multiply K&H section 4.5.
Convolution K&H section 7.4.
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Tiled Convolution

Convolution requires a very simple version of tiling.

Each block loads a single tile of the input data into shared
memory.
Tile should contain “ghost” or “halo” entries: input data stretching
k elements on each side of the desired output elements.
See K&H figure 7.10 for visualization of tiles and halo elements.
See K&H figure 7.11 for kernel implementation.
Can be extended to higher dimensions.

I Shared memory size may severely limit tile size in higher
dimensions, and halo overhead becomes significant.

I For example, in 2D tile size m yields m2 interior elements and
∼ 4mk halo elements.

I For k = 10 and m = 32 (so m2 = 1024 is maximum number of
threads in a block), that requires ∼ 9KB shared memory.
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Constant Memory

What about the mask weights?
We could explicitly load them into shared memory, but:

I The amount of shared memory is very limited.
I Each block would have to load weights into its own shared memory.

Instead we will use GPU’s “constant memory”.
I Another special category of memory (limited to 64 KB)
I Explicitly loaded by the host.
I Kernel code cannot modify the values.
I Logically resides in global memory.
I Specialized constant cache hardware (limited to 10 KB / SM) allows

fast access if all threads request exactly the same memory location
each cycle.
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Constant Memory for Convolution Weights

Implementation:

Host declares global array with constant keyword.
Host loads weights using cudaMemcpyToSymbol() (instead of
cudaMemcpy()).
Kernel accesses weights as a global array.
See K&H section 7.3 for example code.

Note: Constant memory cannot change during kernel execution.
Tiling of mask weights could only be done by launching a new
kernel.
Fortunately, the mask is usually small enough to fit in constant
memory.
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CGMA of Tiled Convolution with Mask in Constant
Memory

Consider 1D convolution and assume data size n is much bigger than
mask size k (to justify ignoring boundary behaviour).

Tile size t > k but not t � k , so we cannot ignore halo cell
overhead.
Consider a single tile.

I We complete t output elements.
I How many input elements are loaded from global memory?
I How many mask weights are loaded from global memory?
I How many output elements are written to global memory?
I How many floating point operations are performed?
I What is the CGMA?
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Example: Image Convolution

Taken from 2016W2 Homework 5.

Work with greyscale images (stored as .ppm).
Convolution mask generated by a Gaussian curve.

I Implements a typical blurring effect.
Original assignment included

I 1D horizontal convolution, 1D vertical convolution,
2D box convolution (implemented by sequential
horizontal and then vertical).

I Basic and tiled versions of each.

Added for this demo: Basic CPU version of each.
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