
Convolution

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – March 19, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 1 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Table of Contents

1 Convolution: Basics
Implementation
Analysis

2 Convolution: Reducing Global Memory Demand
Tiling
Constant Memory
Analysis

3 Convolution: Example

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 2 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Outline

1 Convolution: Basics
Implementation
Analysis

2 Convolution: Reducing Global Memory Demand
Tiling
Constant Memory
Analysis

3 Convolution: Example

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 3 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Convolution in One Dimension
Assume input array {xi}i=n−1

i=0 and output array {yi}i=n−1
i=0 .

Each yi is a weighted sum of xi for i ∈ [i − k , i + k ].
Mathematically

yi =
`=+k∑
`=−k

w`xi+` for all i = 0, . . . ,n

where {w`}`=+k
`=−k and k are given.

I Weights {w`} called the convolution “kernel”, “mask” or “stencil”.
I Mask contains 2k + 1 elements with k � n.
I Value k called “half-width” or (confusingly) “width”.

Graphically, see K&H figures 7.1 and 7.2.
I The input {xi} is stored in N.
I The output {yi} is stored in P.
I The mask {w`} is stored in M.

Need to handle the cases when i + ` < 0 or i + ` >= n.
I Typically substitute xi = 0 for these values of i .
I See K&H figure 7.3.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 4 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Convolution in Higher Dimensions

In two dimensions:
Mathematically

yi,j =

`1=+k1∑
`1=−k1

`2=+k2∑
`2=−k2

w`1,`2xi+`1,j+`2

See K&H figures 7.4 and 7.5.

Conceptually easy to extend to higher dimension.
Number of weights grows quickly with dimension.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 5 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Implementation
Basic CPU implementation:

Double iteration over output values and mask entries.

int stencil half width = stencil width / 2;
for(int i = 0; i < n; i++) {
float sum = 0.0;
for(int k = 0; k < stencil width; k++) {
int index = i + k - stencil half width;
if((index >= 0) && (index < n))

sum += stencil[k] * data in[index];
}
data out[i] = sum;

}

Basic GPU implementation:
Assign one thread to each output value.
Iterate over mask entries.
see K&H figure 7.6.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 6 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


CGMA of Basic Convolution Implementation

Consider 1D convolution and assume data size n is much bigger than
mask size k (to justify ignoring boundary behaviour).

Examine innermost line in K&H figure 7.8:
Pvalue += N[N start point + j] * M[j];

How many elements are loaded from memory?
How many operations are performed?
What is the CGMA?

How can we do better?
How many threads read each element of N?
How many threads read each element of M?

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 7 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Outline

1 Convolution: Basics
Implementation
Analysis

2 Convolution: Reducing Global Memory Demand
Tiling
Constant Memory
Analysis

3 Convolution: Example

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 8 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Shared Memory

Remember from GPU Performance Idiosyncracies:

Conceptually: A small (48KB in all production CCs) amount of
memory shared between the threads in a block.

I Slower than registers but much faster than global memory.
I Must be explicitly allocated and loaded by kernels.
I Some memory coherence guarantees; for example, after

syncthreads().
I Typical uses: Rapid access to selected array data and/or

communication of data between threads.
Practically: A small (96KB in CC 6.1) amount of memory with low
latency and high bandwidth available to each SM.

I Same latency, same (or higher) bandwidth as L1 cache.
I Divided into 32 banks, each of which can serve a load or store

every cycle.
I For maximum efficiency: Threads in a warp either all access the

same location in a bank or access locations in different banks.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 9 / 16

https://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/03-12-GPU-Performance/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Tiling
A common GPU programming pattern for data that is accessed by
multiple threads:

1 Divide the full set of data into “tiles”.
2 Load a small number of tiles into shared memory.

I Number of tiles required at one time is determined by the algorithm.
I Size of tiles is determined by the number required and size of

shared memory.
I Choosing smaller blocks allows more shared memory / thread but

often requires more overhead.
3 Do as much work as possible on those tiles.
4 Save results.
5 Repeat from step 2 until all data is processed.

Examples
Matrix multiply K&H section 4.5.
Convolution K&H section 7.4.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 10 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Tiled Convolution

Convolution requires a very simple version of tiling.

Each block loads a single tile of the input data into shared
memory.
Tile should contain “ghost” or “halo” entries: input data stretching
k elements on each side of the desired output elements.
See K&H figure 7.10 for visualization of tiles and halo elements.
See K&H figure 7.11 for kernel implementation.
Can be extended to higher dimensions.

I Shared memory size may severely limit tile size in higher
dimensions, and halo overhead becomes significant.

I For example, in 2D tile size m yields m2 interior elements and
∼ 4mk halo elements.

I For k = 10 and m = 32 (so m2 = 1024 is maximum number of
threads in a block), that requires ∼ 9KB shared memory.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 11 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Constant Memory

What about the mask weights?
We could explicitly load them into shared memory, but:

I The amount of shared memory is very limited.
I Each block would have to load weights into its own shared memory.

Instead we will use GPU’s “constant memory”.
I Another special category of memory (limited to 64 KB)
I Explicitly loaded by the host.
I Kernel code cannot modify the values.
I Logically resides in global memory.
I Specialized constant cache hardware (limited to 10 KB / SM) allows

fast access if all threads request exactly the same memory location
each cycle.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 12 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Constant Memory for Convolution Weights

Implementation:

Host declares global array with constant keyword.
Host loads weights using cudaMemcpyToSymbol() (instead of
cudaMemcpy()).
Kernel accesses weights as a global array.
See K&H section 7.3 for example code.

Note: Constant memory cannot change during kernel execution.
Tiling of mask weights could only be done by launching a new
kernel.
Fortunately, the mask is usually small enough to fit in constant
memory.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 13 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


CGMA of Tiled Convolution with Mask in Constant
Memory

Consider 1D convolution and assume data size n is much bigger than
mask size k (to justify ignoring boundary behaviour).

Tile size t > k but not t � k , so we cannot ignore halo cell
overhead.
Consider a single tile.

I We complete t output elements.
I How many input elements are loaded from global memory?
I How many mask weights are loaded from global memory?
I How many output elements are written to global memory?
I How many floating point operations are performed?
I What is the CGMA?

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 14 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Outline

1 Convolution: Basics
Implementation
Analysis

2 Convolution: Reducing Global Memory Demand
Tiling
Constant Memory
Analysis

3 Convolution: Example

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 15 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018


Example: Image Convolution

Taken from 2016W2 Homework 5.

Work with greyscale images (stored as .ppm).
Convolution mask generated by a Gaussian curve.

I Implements a typical blurring effect.
Original assignment included

I 1D horizontal convolution, 1D vertical convolution,
2D box convolution (implemented by sequential
horizontal and then vertical).

I Basic and tiled versions of each.

Added for this demo: Basic CPU version of each.

Greenstreet & Mitchell Convolution CpSc 418 – Mar. 19, 2018 16 / 16

https://www.ugrad.cs.ubc.ca/~cs418/2016-2/homework.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_19
https://en.wikipedia.org/wiki/2018

	Convolution: Basics
	Implementation
	Analysis

	Convolution: Reducing Global Memory Demand
	Tiling
	Constant Memory
	Analysis

	Convolution: Example

