
GPU Performance Idiosyncracies

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – March 12, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 1 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Table of Contents

1 Memory Performance Considerations
Memory Subsystem Design
Coalesced and Overlapping Global Memory Access
Shared Memory Bank Collisions

2 Thread Performance Considerations
Thread Divergence
Block Size and SM Resource Limits
Thread Granularity

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 2 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Outline

1 Memory Performance Considerations
Memory Subsystem Design
Coalesced and Overlapping Global Memory Access
Shared Memory Bank Collisions

2 Thread Performance Considerations
Thread Divergence
Block Size and SM Resource Limits
Thread Granularity

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 3 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Memory Layout

Memories are arranged in 2D arrays of identical cells.

Each cell stores one (or a small number) of bits.
I Size of cell determines density of memory (and hence cost).
I SRAM cells (cache memory) typically use 6 transitors / bit.
I DRAM cells (main / global memory) require 1 transistor and 1

capacitor / bit.
Extra logic arranged around edges of array.

I Demultiplexors to activate appropriate row and column.
I Amplifiers to make small signals bigger.
I Address and data I/O lines.

Array size is limited by length of row and column wires.
I Longer wires have more capacitance.
I More capacitance requires more power and/or time to change

voltage and hence signal value.

Bandwidth of each array is limited by time to read / write a cell.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 4 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Additional DRAM Headaches
SRAM arrays: Access any one cell per cycle.

DRAM arrays: It’s complicated. . .

Precharge two “bit-lines” for each column to 1/2 operating voltage.
Isolate bit-lines and charge appropriate row access line.
All cells on selected row connect capacitors to one pre-charged
bit-line.

I If capacitor is empty (“0”), bit-line voltage drops a tiny amount.
I If capacitor is full (“1”), bit-line voltage rises a tiny amount.

Sense-amplifiers at bottom of columns use positive feedback to
drive this slight imbalance toward a complete imbalance.
Latches attached to bit-lines capture result.
Bit-lines refresh capacitors.
Data from one or more columns is sent from latches.

See Wikipedia’s DRAM entry and basic structure diagram

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 5 / 16

https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory#/media/File:DRAM_cell_field_(details).png
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Yet Another Memory Hierarchy

Implications of DRAM design on access:

Limited data I/O from any single memory array.
Large delay between requesting a memory location from a DRAM
array and receiving the data.
We can use the I/O lines for other accesses while we wait.

To achieve large, high bandwidth memory build a hierarchy.

Memory array.
Banks: One or more memory arrays that share address lines.
Chips: Multiple banks that share address lines.
Ranks: Multiple chips that share address lines.
Module (DIMM): One or more ranks
Channel: One or more modules.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 6 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Why So Many Layers?

Bandwidth = frequency × (occupied) bus width.

High frequency limits number of elements on each wire.
Use multiple channels to access more modules in parallel.
Use multiple ranks to increase capacity of each module.
Use multiple chips to increase width of each transfer.
Use multiple banks to allow overlapping accesses.
Use multiple arrays to provide multiple bits.

The good news: Efficient memory access patterns can be designed
based only on properties of channels and banks (see K&H figure 5.7).

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 7 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Implications of a Read on the Memory Subsystem

uint j = blockDim.x * blockIdx.x + threadIdx.x;
if(j < n) {
uint x less2 = x0[j];

...

At least 32 threads (one warp) execute read at the same time.
Cache(s) identify missed cache lines.
If memory locations are consecutive, 1–2 cache lines needed.

I Called a “coalesced” memory access.
If memory locations are not consecutive:

I More cache lines must be loaded (requires more memory bus
transactions).

I Some cache line data may not be used (wasted memory
bandwidth).

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 8 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Implications of Coalescing on GPU Programming
Arrange thread and data layout so that consecutive threads access
consecutive data.

Threads that differ in threadIdx.x should access consecutively
stored data.

Use shared memory to rearrange inconvenient access patterns
(“corner turning”).

Consider matrix-matrix multiply C = AB (row-major storage).
I Thread for element ci,j assigned indexes by:

uint i = blockIdx.x*blockDim.x + threadIdx.x;
uint k = blockIdx.y*blockDim.y + threadIdx.y;

I Consecutive threads will access one column of A: not good (K&H
figure 5.4).

I Consecutive threads will access one row of B: good (K&H
figure 5.3).

I To allow coalescing, make sure that both A and B are loaded into
shared memory one row at a time (K&H figure 5.5 and 5.6).

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 9 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Distributing Memory Accesses
Banks and channels must fulfill memory requests (K&H figures 5.9
and 5.8).

In Pascal architecture (CC 6.x) consecutive 32B L1 cache
“sectors” (1/4 of a cache line) are mapped to different channels.

I Ensuring that consecutive sectors are accessed together allows
simultaneous use of multiple channels.

I GTX 1060 3GB has 6 channels each with 32 GB/s bandwidth.
After all channels are assigned consecutive sectors, next set of
sectors is assigned to different banks in the same channels.

I DRAM access delay for different banks can be overlapped.
I To keep data bus fully utilized requires many overlapping requests.

Moral of the story: Coalesced access is good.
I Reduces number of cache lines to load.
I Increases number of channels in use simultaneously.
I Increases overlapping of DRAM access delay to different banks.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 10 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Collisions
Multiple simultaneous accesses to a single channel.
Multiple simultaneous or consecutive accesses within the DRAM
access delay to a single bank.

Global memory (off-chip DRAM):
Coalesced memory accesses will avoid collisions.
Many banks reduce likelihood of bank collision.
Each channel needs many active requests to fully utilize
bandwidth, so channel collisions are good(?)

Shared memory (on-chip SRAM):
Divided into 32 “banks” (more like global memory’s channels).
No need to account for DRAM access delay.
Each bank stores 4 consecutive bytes.
Each bank has bandwidth 4B / cycle.
Each thread can access any bank.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 11 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Avoiding Shared Memory Collisions

Simple: Consecutive threads access consecutive data.
Also efficient: Consecutive threads access exactly the same data.
Also efficient: Consecutive threads access data in a pattern which
hits different banks modulo 32; for example, any odd stride.
Avoid: Consecutive threads access data with a power of two
stride.

See Figure 17 and Figure 18 from Nvidia programming guide.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 12 / 16

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-5-x__examples-of-strided-shared-memory-accesses
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-5-x__examples-of-irregular-shared-memory-accesses
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


Outline

1 Memory Performance Considerations
Memory Subsystem Design
Coalesced and Overlapping Global Memory Access
Shared Memory Bank Collisions

2 Thread Performance Considerations
Thread Divergence
Block Size and SM Resource Limits
Thread Granularity

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 13 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


SIMD, Warps and Thread Divergence
All CUDA threads are scheduled in batches (“warps”) of 32 based on
thread index (always threadIdx.x first, see K&H figure 5.12).

One instruction sent to all threads in the warp each cycle; each
thread may either perform that instruction or a no-op.

I If one or more threads in a warp need to execute an instruction, that
whole warp will consume resources.

I If zero threads in a warp need to execute an instruction, that warp
will not consume resources.

Ensure that blocks always contain a multiple of 32 threads.
If branching (“control divergence”) is necessary, try to reduce the
number of warps executing different branches.

I Relatively easy if branching is based on thread index.
Example: Reduce

I If neighboring threads handle neighboring elements, every warp
has divergence (K&H figure 5.14).

I If neighboring threads handle maximally separated elements, no
more than one warp has divergence (K&H figure 5.16).

I Aside: Which has better global memory access pattern?

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 14 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


How to Choose Block Size?
Threads within a block can share memory and synchronize, so bigger
is better? Not necessarily!

Each block must be scheduled onto a single SM.
Each block has limits (limits for CC 6.1):

I Number of resident threads (1024).
I Number of registers (65536).
I Amount of shared memory (48 KB).

Each SM has limits (limits for CC 6.1):
I Number of resident blocks (32).
I Number of resident warps (64).
I Number of resident threads (2048).
I Number of registers (65536).
I Amount of shared memory (96 KB).
I Cache working set for constant memory (10 KB).
I Number of ALUs (128).

Poorly chosen block size can result in idle SM resources.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 15 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018


How Much Work per Thread?
More threads gives more options for scheduling, so more threads is
better? Not necessarily!

Can more work / thread increase CGMA?
I Tiled matrix multiply: Have each thread compute two output

elements in different output tiles.
I 200% computation, 150% global memory accesses (one input tile

is reused).
Can more work / thread increase independent operations?

I Tiled matrix multiply: Have each thread compute one or four output
elements in the same tile.

I 32× 32 tiles: 8 KB shared memory and 1024 or 256 threads / block.
I SMs can host either 2 blocks or 8 blocks.

But more work per thread may increase resource use per thread
and hence constrain block size and/or reduce residency of SMs.

I More work often requires more registers, which can limit number of
active threads / SM.

Greenstreet & Mitchell GPU Performance Idiosyncracies CpSc 418 – Mar. 12, 2018 16 / 16

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_12
https://en.wikipedia.org/wiki/2018

	Memory Performance Considerations
	Memory Subsystem Design
	Coalesced and Overlapping Global Memory Access
	Shared Memory Bank Collisions

	Thread Performance Considerations
	Thread Divergence
	Block Size and SM Resource Limits
	Thread Granularity


