
GPU Memory

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – March 7, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 1 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Table of Contents

1 A Brief Review

2 GPU Memory Architecture

3 Example: Matrix Multiply

4 Shared Memory

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 2 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Outline

1 A Brief Review

2 GPU Memory Architecture

3 Example: Matrix Multiply

4 Shared Memory

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


CPU Memory Hierarchy

From “Shared Memory Multiprocessors” slides (Jan. 19).

What about current multicore CPU designs?
What are relative speeds and sizes of memories?

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 4 / 17

https://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/01-19/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


GPU Design Considerations

Sell chips / cards by being much faster than a CPU for rendering and
other data parallel applications (scientific computing, machine
learning, . . . ).

Have thousands of floating point ALUs (lots of compute).
Use SIMD design (fewer resources spent on control).
Limit (ignore?) dependency between and within threads (avoid
moving data far and/or fast).
Have very large register file (swap between many active threads).
Use fastest available DRAM memory.
Provide explicitly managed specialized memory.

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 5 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


GPU Capabilities

Using lab GPUs (GTX 1060) as an example:

Peak 3470 single precision GFLOPS from 1152 single precision
SPs running at 1.5 GHz.
Memory bandwidth 192 GB/s.

How many times must we reuse each data value from global memory
to avoid being memory bound?

Exposing (abstract) hardware details to programmer enables design of
software which can make better use of massive parallelism available

and thereby dramatically improve performance.

or

If it isn’t fast, it’s your fault.

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 6 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Aside: Counting FLOPS

FLOPS = Floating Point Operations per Second.

What is an operation? Mostly add / subtract / multiply single
precision floating point numbers.
Standard integer ops similarly fast.
Some hardware available for other common functions: sin, cos,
tan, exp, log, pow, sqrt.
But: Divide (accurate version) is very slow.

Marketing trick: “Fused multiply-add” (FMA or MAD).
Very common numerical operation: w = x ∗ y + z.
Easily implemented with little extra space and no extra time in a
hardware multiplier.
Counts as two operations!

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 7 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Outline

1 A Brief Review

2 GPU Memory Architecture

3 Example: Matrix Multiply

4 Shared Memory

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 8 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Abstract GPU Memory Types

Explicitly
Type Scope Speed Size Managed

Registers thread +++ 256 KB / SM
Shared SM + 64 KB / SM X

Constant global + 10 KB cached / SM X
Global global – 2–12 GB ∼

See K&H Figure 4.6.

Like standard von Neumann architecture, there is a register file
(managed by the compiler) and “global” memory (shared
management).
CUDA abstract architecture provides two additional categories of
programmer managed memory.

I Slower than registers but faster than global memory.
I Smaller than registers but shared between threads.

Global memory is still far too slow.

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 9 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Hardware GPU Memory Types
Latency Explicitly

Type (cycles) Bandwidth Size Managed
Registers 1–6 8–16 B / cycle / SP 256 KB / SM
Shared 30–50 4 B / cycle / SP 64 KB / SM X

Constant 30–50 ? 10 KB cached / SM X
L1 cache 30–50 ? 48 KB / SM
L2 cache ∼200 ? 1–2 MB

Global ∼400 48–540 GB / s 2–12 GB ∼

Details taken from Pascal microarchitecture / GeForce 10 series cards (GTX
1060 3GB / GP106 chip).

1.2–1.6 GHz core clock (1.5 GHz).

3–30 SMs, each with 4 warp schedulers handling 128 single precision
SPs and 4 double precision SPs (9 SMs).

2–12 GB global (3 GB) at 48–540 GB/s (192 GB/s).

942–10790 single precision GFLOPS (3470).

Note: Nvidia publishes throughput / bandwidth numbers, but latency numbers
have to be determined experimentally.

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 10 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Outline

1 A Brief Review

2 GPU Memory Architecture

3 Example: Matrix Multiply

4 Shared Memory

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 11 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Revisit Matrix Multiply

Compute C = AB with A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p.

Total memory read:
Total memory written:
Total computation:

Compute to memory access (CMA):

Why are we achieving such poor performance despite high CMA for
m = n = p ≈ 3000?

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 12 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


What is the Memory Access Pattern?
Examine our basic implementation of matrix multiply

global void s418mm kernel(float *A, float *B, float *C, uint m, uint n, uint p) {
// Determine our location in the matrix using nvcc built-ins.
uint i = blockIdx.x*blockDim.x + threadIdx.x;
uint k = blockIdx.y*blockDim.y + threadIdx.y;
// If we are not an extra thread.
if((i < m) && (k < p)) {

// Calculate a single element of the output matrix.
float sum = 0.0;
for(uint j = 0; j < n; j++)

sum += A[IDX2F(i,j,m,n)] * B[IDX2F(j,k,n,p)];
C[IDX2F(i,k,m,p)] = sum;

}
}

Compare to K&H figure 4.3.

Consider the loop performed by each thread: How many
computations per global memory access (CGMA)?

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 13 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Outline

1 A Brief Review

2 GPU Memory Architecture

3 Example: Matrix Multiply

4 Shared Memory

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 14 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Shared Memory to Reduce Global Memory Traffic

Observe that
I Threads for ci,∗ read the same elements ai,∗.
I Threads for c∗,j read the same elements b∗,j .
I See K&H figure 4.5.

If we can avoid reloading these shared elements multiple times
from global memory, we can increase CGMA.
Where to store?

I Registers?

I L1 cache?

I Constant memory?

I Shared memory?

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 15 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Laying Out the Data
How should we organize the data in shared memory?
Assume we can store s � 1 matrix entries in shared memory.

Work on just i th row of output matrix C (elements ci,∗).
I Can share s elements of matrix A.
I Cannot share any elements of matrix B.
I Change in CGMA:

Work on just k th column of output matrix C (elements c∗,k ).
I Cannot share any elements of matrix A.
I Can share s elements of matrix B.
I Change in CGMA:

Work on r =
√

s/2 rows and r columns of output matrix C.
I Can share r2 = s/2 elements of matrix A.
I Can share r2 = s/2 elements of matrix B.
I See K&H figures 4.14 and 4.17.
I Change in CGMA:

This common design pattern is called “tiling” the data.
Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 16 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018


Implementing Tiled Matrix Multiply

See kernel in K&H figure 4.16

Why are there two loops?

What might happen if we omitted the first syncthreads()?

What might happen if we omitted the second syncthreads()?

How should you size your tiles and blocks?

Greenstreet & Mitchell GPU Memory CpSc 418 – Mar. 7, 2018 17 / 17

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_7
https://en.wikipedia.org/wiki/2018

	A Brief Review
	GPU Memory Architecture
	Example: Matrix Multiply
	Shared Memory

