
CUDA Threads

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – February 26, 2018

Unless otherwise noted or cited, these slides are copyright 2018 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 1 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Table of Contents

1 Data Parallel Programming
Why Data Parallel on GPUs?
Data Parallel Problems

2 Thread Organization: Conceptual

3 Thread Organization: Execution

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 2 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Outline

1 Data Parallel Programming
Why Data Parallel on GPUs?
Data Parallel Problems

2 Thread Organization: Conceptual

3 Thread Organization: Execution

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 3 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


GPU Architecture Summary

Focus on the nVidia architecture, but others are very similar.

Lots of cores:
I Dozens of SIMD processors.
I Each SIMD processor has 32 pipelines.

Deep, simple, execution pipelines
I Optimized for floating point.
I No bypassing: use multi-threading for performance.
I Branches handled by predicated execution

“When you come to a fork in the road, take it.”
(Often attributed to Yogi Berra.)

Limited on-chip memory of various types.
I 1–2 MB total (compare to big CPUs with 32–64MB of L3 cache).
I The programmer manages data placement.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 4 / 22

https://en.wikipedia.org/wiki/Yogi_Berra
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Why this Architecture? First Answer: Performance

Today’s processors are constrained by how much performance you
can get using ∼ 200 watts.

Lots of energy needed to move bits and/or perform operations
quickly.

I E ∼ d/tα, where E is energy, d is distance, t is time per
operation, and 1 < α < 2 depending on design details.

I Corollary: P ∼ d/tα+1. Power grows someplace between
quadratically and cubically with clock frequency.

GPUs optimize performance/power through use of:
I SIMD: instruction fetch and decode moves lots of bits. Amortize

over many cores.
I Simple pipelines: bypassing means moving bits quickly. GPUs omit

bypasses.
I High latency: avoid pipeline stages that must do a lot in a hurry.
I Expose the memory hierarchy: let the programmer control moving

data bits around.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 5 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Why this Architecture? Second Answer: Economics
GPUs are designed for the consumer graphics market, and happen to
be useful for parallel numerical computing.

High-volume market amortizes high design cost over large
number of units sold.
Cheap sells.

“I think there is a world market for about five computers”
(Often (mis)attributed to IBM’s T. J. Watson.)

I It was the unprecedented drop in price/performance created by the
integrated circuit (Moore’s law) which made this prediction so
completely wrong.

I Add only features which will sell more chips.
Market niches are important.

I More memory would help GPUs for numerical computing, but little
payoff for graphics and it starts to look like a CPU.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 6 / 22

https://en.wikipedia.org/wiki/Thomas_J._Watson
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Data Parallelism

Spotting it: When you see a for-loop:
I Is the loop-index used as an array index?
I Are the iterations independent?

If the order of iterations does not matter, do them in parallel!

Data-parallel problems:
I Run well on GPUs because each element (or segment) of the array

can be handled by a different thread.
I Are good candidates for most parallel techniques because the

available parallelism grows with the problem size.

Compare with “task parallelism” where the problem is divided into
the same number of tasks regardless of its size.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 7 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Outline

1 Data Parallel Programming
Why Data Parallel on GPUs?
Data Parallel Problems

2 Thread Organization: Conceptual

3 Thread Organization: Execution

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 8 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Thread organization: Grids, Blocks and Threads

When a kernel is launched, it creates a collection of threads called
a grid.
A grid is organized as an array of blocks
Each block is an array of threads
Array sizes are fixed once a kernel is launched.
Why so many details?

I Switching between blocks is done (I infer) by software in the GPU.
I Switching between threads in a block is done by hardware.
I By distinguishing blocks from threads, the CUDA model exposes to

the programmer the difference in behavior and consequent
difference in performance.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 9 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


A grid is an array of blocks

(1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0)

A grid

Blocks are scheduled by the GPU software.
Blocks can be arranged as 1D, 2D or 3D array.

I Dimensions are called “x”, “y” and “z”.
There can be lots of blocks:

I Each dimension can be up to 216 − 1 = 65535.
I CC 3.0+ allows x dimension up to 231 − 1 blocks.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 10 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Each block is an array of threads

(3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(0,4,0)

(1,0,0)

(1,1,0)

(1,2,0)

(1,3,0)

(1,4,0)

(2,0,0)

(2,1,0)

(2,2,0)

(2,3,0)

(2,4,0)

(0,0) (1,0) (2,0) (3,0) (4,0)
(5,0)

Blocks

(0,1)

Threads

(1,1) (2,1)

Where do they put all those threads?

Threads are scheduled by the GPU hardware.
Threads can be arranged as a 1D, 2D, or 3D array

I Grid and block dimensions and sizes may be different.
There can be a moderate number of threads in each dimension:

I x or y up to 1024 threads.
I z up to 64 threads.

However, total number of threads per block (product of all
dimensions) is also capped at 1024.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 11 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Threads and Blocks: Launching a Kernel

Assume that we have a kernel function:
global void kernel fun(formal args)

Then to launch this kernel, we execute a statement:
kernel fun<<<dimGrid, dimBlock>>>(actual args);

where

dimGrid specifies the dimension(s) of the grid (an array of blocks):

I dimGrid can be an int, in which case the array is 1D.
I dimGrid can be a dim3; for example, dim3(6,4,1)

dimBlock specifies the dimension(s) of each block (an array of threads):

I dimBlock can also be an int or a dim3.

Why are grids and blocks 1D, 2D or 3D?

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 12 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Threads and Blocks: Which Thread Are We?

Within a running kernel, CUDA-C provides four built-in variables to
determine the position of a thread within the grid: gridDim,
blockIdx, blockDim, and threadIdx.
There is a naming pattern:

I Each of these structures has three fields: x, y and z corresponding
to the three possible dimensions.

I gridDim.? gives the size of the grid in each dimension x, y or z.
I blockDim.? gives the size of each block in each dimension.
I blockIdx.? gives the indices of the thread’s block within the grid.
I threadIdx.? gives the indices of the thread within its block.

For dimensions which are absent:
I gridDim or blockDim will be 1.
I blockIdx or threadIdx will be 0.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 13 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Threads and Blocks: Which Thread Are We?

Note the constraints:

0 ≤ blockIdx.x < gridDim.x

0 ≤ blockIdx.y < gridDim.y

0 ≤ blockIdx.z < gridDim.z

0 ≤ threadIdx.x < blockDim.x

0 ≤ threadIdx.y < blockDim.y

0 ≤ threadIdx.z < blockDim.z

Because the size of blocks is severely limited, it is common to use
code such as:

uint my idx = blockDim.x*blockIdx.x + threadIdx.x;
to combine the block and thread indices into a single index.

Example: Consider indexes of threads associated to pixels in K&H
Figure 3.5.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 14 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Threads and Blocks: Synchronization

How do we ensure that all threads have completed certain tasks?

Within a block use syncthreads(): All the threads in the block
must execute this statement before any can continue beyond it.

I That means the same line of code.
I In loops, that means hitting the barrier in the same iteration.
I In conditionals be very careful about thread divergence: All threads

in the block must meet at the same barrier.
I Executing different syncthreads() commands will cause the

kernel to hang.

Within a grid: Finish the kernel and launch another.
We’ll cover synchronization in more detail later.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 15 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Threads and Blocks: Bounds checking
Consider executing kernel fun on an array of n elements.

Because n might be large, we’ll use n/256 blocks of 256 threads.
I If n is not a multiple of 256 we must round up the number of blocks

to make sure we have enough threads.

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

I Why divide by 256.0 instead of 256?
I Why use ceil?

When executing the kernel, need to handle extra threads.
I For example, consider n = 1000, so there are 4 blocks of 256

threads for a total of 1024 threads.
I Kernel must include a test to ensure the extra threads are idle:

uint my idx = blockDim.x*blockIdx.x + threadIdx.x;
if(my idx < n) {
<reading and writing memory locations in arrays of size n>

}

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 16 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Outline

1 Data Parallel Programming
Why Data Parallel on GPUs?
Data Parallel Problems

2 Thread Organization: Conceptual

3 Thread Organization: Execution

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 17 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


SMs, SPs and Warps (oh my!)

Each streaming multiprocessor (SM) has multiple streaming
processors (SPs) and can be responsible for multiple groups of 32
threads called warps.

I From the New Oxford American Dictionary : (the) “warp” is “the
threads on a loom over and under which other threads (the weft)
are passed to make cloth”

Details, details. . .
I These concepts are not part of the CUDA platform and API: Code

is written in terms of a grid of blocks of threads.
I You can write correct code without thinking about these details.
I If you want to write fast code, you must take them into account.
I The block vs grid structure exposes these details if you want to take

advantage of them.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 18 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


SMs, SPs and Warps: What are They?

Each streaming multiprocessor (SM) in the GPU executes threads
in SIMD fashion.

I All threads in a block are assigned to the same SM.
I Each SM has a single instruction fetch unit and a larger number of

execution units.
Each SM has multiple streaming processors (SPs) that actually
execute instructions.

I What marketing calls “NVidia CUDA Cores.”
I Most SPs handle basic ALU operations (integer and floating point).
I Also separate specialized execution units, such as load/store or

special functions.
I A single SP can start a single operation on a single thread each

cycle.

On each cycle, each SM dispatches an instruction for the threads
of an executable warp to its SPs.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 19 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Compute Capability: Version numbers for your GPU
Architecture and hardware constraints affect performance.

I Specific values of those constraints depend on chip / card.
I Software user base will have a wide variety of chips / cards.

Impractical to optimize high-level implementation or even “parallel
thread execution” (PTX) intermediate assembly code for all
possible chips / cards.
Enter compute capability: essentially a version number for the
GPU hardware.

I Graphics lab machines linXX.ugrad.cs.ubc.ca (where XX
takes values 01,02, . . . ,25) have GeForce GTX 1060 3GB cards
which feature compute capability 6.1.

I Examples of NVidia GPUs:
F Compute capability 3.5: GT 730 & GTX 780.
F Compute capability 5.0: GTX 750, 8xxM & 960M.
F Compute capability 5.2: GTX 9xx, 965M.
F Compute capability 6.1: GTX 10xx.

I More details at the CUDA wikipedia page.

Warning: We are using the NVidia jargon.
Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 20 / 22

https://en.wikipedia.org/wiki/CUDA
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


SMs, SPs and Warps: Why do We Care?

Fill your warps: Ensure the number of threads in a block is a
multiple of the warp size to avoid idle hardware.
Have lots of warps: If one warp is waiting on a long latency
operation, the SM can find another warp to execute.

I Provides latency tolerance or latency hiding.
Watch out for hardware limits (per SM).

I Maximum number of resident blocks (8 in 2.x, 32 in 6.x).
I Maximum number of resident warps (48 in 2.x, 64 thereafter).
I Maximum number of resident threads (1536 in 2.x, 2048 thereafter).
I Exceeding these limits will not crash the system, but will result in

slower execution.
Watch out for thread divergence.

I If different threads in the same warp are following different code
paths, all possible paths will be executed sequentially and those
threads not on the current path will be idle.

I Execution is still correct, but much slower.

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 21 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018


Review

In CUDA, what is a grid, a block, and thread?
Why does CUDA allow millions of thread blocks but only 1024
threads per block?
How does a programmer specify the number of blocks and
number of threads when launching a CUDA kernel?
How does a thread determine its position within the grid?
Why do threads need to check their indices against array bounds?
What is a warp? Why does it matter?
Why are NVidia GPUs have both a model number (such as “GTX
1060”) and a compute capability (such as “CC 6.1”)?

Greenstreet & Mitchell CUDA Threads CpSc 418 – Feb. 26, 2018 22 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/November_26
https://en.wikipedia.org/wiki/2018

	Data Parallel Programming
	Why Data Parallel on GPUs?
	Data Parallel Problems

	Thread Organization: Conceptual
	Thread Organization: Execution

