Midterm Review

Mark Greenstreet and lan M. Mitchell

CpSc 418 — February 16, 2018

@ Erlang: functional and message passing

@ Reduce and Scan

@ Parallel architecture: shared memory and message passing

@ Parallel Performance: Speed-up, performance loss, Amdahl,
Gustafson, dependencies, energy, PRAM, CTA, logP.

@ Parallel sorting: sorting networks, the 0-1 principle, bitonic sort

@ Data Parallel and GPUs: not on the midterm
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Erlang is functional

@ Implement simple recursive functions, e.g. fast_flatten from
pika4.erl.
@ Understand difference between head- and tail-recursive
@ Avoid common ways to make inefficient code such as
» using ++ to append one item at a time to a list.
» using length in a guard
@ Higher order functions: map, foldl, foldr, mapfoldl, mapfoldr, list
comprehensions
» able to use them for common patterns.
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Erlang supports message passing

@ Know how to spawn a process, send messages, receive
messages.
@ Message ordering constraints: the triangle inequality, nothing else.
@ Receive uses pattern matching
» tagging messages is good.
» example: how could reduce fail if the implementation didn’t tag
messages?

@ timeouts — use carefully and sparingly
@ Example: the lock problem from HW2.
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Reduce

@ Reduce is a parallel version of foldl.
@ The reduction operation needs to be
» associative?
» commutative?
» reflexive?
» transitive?
what do those “math words” mean?
@ Often, we need to find an intermediate data structure to pass
values from Leaf to Combine, between levels of Combine, and
from Combine to Root.

» Look at examples from HW2, lecture slides, and Lin & Snyder,
Chapter 5 (handed out in class).
@ If we can combine two value in unit time, how long does it take to
combine N items using P processors, assuming that messages
take time X (total for a single send and the matching receive)?

v
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Scan

@ Scan is a parallel version of mapfoldI.

» For every reduce problem, there is a corresponding scan version.

@ Implementation involves a pass down the tree.
@ But, we abstact/hide those details inside the wtree:scan
function

» What does 1.eaf1 need to compute?
» What does Combine need to compute?
» What does L.eaf2 need to compute?

* What is the AccIn parameter to wtree:scan?
* What is the AccIn parameterto Leaf2?

@ But, we abstact/hide those details inside the wtree:scan
function

@ Look at examples from HW2, lecture slides, and Lin & Snyder,
Chapter 5 (handed out in class).
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Shared Memory Architecture

@ Caches
@ The MESI Protocol

@ Understand that MESI allows many caches to share a read-only
copy of a cache line and guarantees that they all have the value of
the most recent write.

@ At most one cache can have a writeable copy.

@ Understand how MESI combines write-through with write-back to
achieve this.

@ Able to define “sequential consistency”.

@ Able to trace what happens for a short sequence of memory
operations.

@ Example see pika4.
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Message Passing Architectures
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Performance
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Sorting
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Proofs
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Happy New Year
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