
Midterm Review

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – February 16, 2018

Erlang: functional and message passing
Reduce and Scan
Parallel architecture: shared memory and message passing
Parallel Performance: Speed-up, performance loss, Amdahl,
Gustafson, dependencies, energy, PRAM, CTA, logP.
Parallel sorting: sorting networks, the 0-1 principle, bitonic sort
Data Parallel and GPUs: not on the midterm

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 1 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Erlang is functional

Implement simple recursive functions, e.g. fast flatten from
pika4.erl.
Understand difference between head- and tail-recursive
Avoid common ways to make inefficient code such as

I using ++ to append one item at a time to a list.
I using length in a guard

Higher order functions: map, foldl, foldr, mapfoldl, mapfoldr, list
comprehensions

I able to use them for common patterns.

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 2 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Erlang supports message passing

Know how to spawn a process, send messages, receive
messages.
Message ordering constraints: the triangle inequality, nothing else.
Receive uses pattern matching

I tagging messages is good.
I example: how could reduce fail if the implementation didn’t tag

messages?

timeouts – use carefully and sparingly
Example: the lock problem from HW2.

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 3 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Reduce

Reduce is a parallel version of foldl.
The reduction operation needs to be

I associative?
I commutative?
I reflexive?
I transitive?
I what do those “math words” mean?

Often, we need to find an intermediate data structure to pass
values from Leaf to Combine, between levels of Combine, and
from Combine to Root.

I Look at examples from HW2, lecture slides, and Lin & Snyder,
Chapter 5 (handed out in class).

If we can combine two value in unit time, how long does it take to
combine N items using P processors, assuming that messages
take time λ (total for a single send and the matching receive)?

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 4 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Scan

Scan is a parallel version of mapfoldl.
I For every reduce problem, there is a corresponding scan version.

Implementation involves a pass down the tree.
But, we abstact/hide those details inside the wtree:scan
function

I What does Leaf1 need to compute?
I What does Combine need to compute?
I What does Leaf2 need to compute?

F What is the AccIn parameter to wtree:scan?
F What is the AccIn parameter to Leaf2?

But, we abstact/hide those details inside the wtree:scan
function
Look at examples from HW2, lecture slides, and Lin & Snyder,
Chapter 5 (handed out in class).

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 5 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Shared Memory Architecture

Caches
The MESI Protocol
Understand that MESI allows many caches to share a read-only
copy of a cache line and guarantees that they all have the value of
the most recent write.
At most one cache can have a writeable copy.
Understand how MESI combines write-through with write-back to
achieve this.
Able to define “sequential consistency”.
Able to trace what happens for a short sequence of memory
operations.
Example see pika4.

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 6 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Message Passing Architectures

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 7 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Performance

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 8 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Sorting

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 9 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Proofs

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 10 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018


Happy New Year

Greenstreet & Mitchell Midterm Review CpSc 418 – Feb. 16, 2018 11 / 11

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

