Midterm Review

Mark Greenstreet and lan M. Mitchell

CpSc 418 — February 16, 2018

@ Erlang: functional and message passing

@ Reduce and Scan

@ Parallel architecture: shared memory and message passing

@ Parallel Performance: Speed-up, performance loss, Amdahl,
Gustafson, dependencies, energy, PRAM, CTA, logP.

@ Parallel sorting: sorting networks, the 0-1 principle, bitonic sort

@ Data Parallel and GPUs: not on the midterm

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & lan M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license

http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018 1/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Erlang is functional

@ Implement simple recursive functions, e.g. fast_flatten from
pika4.erl.
@ Understand difference between head- and tail-recursive
@ Avoid common ways to make inefficient code such as
» using ++ to append one item at a time to a list.
» using length in a guard
@ Higher order functions: map, foldl, foldr, mapfoldl, mapfoldr, list
comprehensions
» able to use them for common patterns.

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018 2/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Erlang supports message passing

@ Know how to spawn a process, send messages, receive
messages.
@ Message ordering constraints: the triangle inequality, nothing else.
@ Receive uses pattern matching
» tagging messages is good.
» example: how could reduce fail if the implementation didn’t tag
messages?

@ timeouts — use carefully and sparingly
@ Example: the lock problem from HW2.

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018 3/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Reduce

@ Reduce is a parallel version of foldl.
@ The reduction operation needs to be
» associative?
» commutative?
» reflexive?
» transitive?
what do those “math words” mean?
@ Often, we need to find an intermediate data structure to pass
values from Leaf to Combine, between levels of Combine, and
from Combine to Root.

» Look at examples from HW2, lecture slides, and Lin & Snyder,
Chapter 5 (handed out in class).
@ If we can combine two value in unit time, how long does it take to
combine N items using P processors, assuming that messages
take time X (total for a single send and the matching receive)?

v

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018 4/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Scan

@ Scan is a parallel version of mapfoldI.

» For every reduce problem, there is a corresponding scan version.

@ Implementation involves a pass down the tree.
@ But, we abstact/hide those details inside the wtree:scan
function

» What does 1.eaf1 need to compute?
» What does Combine need to compute?
» What does L.eaf2 need to compute?

* What is the AccIn parameter to wtree:scan?
* What is the AccIn parameterto Leaf2?

@ But, we abstact/hide those details inside the wtree:scan
function

@ Look at examples from HW2, lecture slides, and Lin & Snyder,
Chapter 5 (handed out in class).

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018

5/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Shared Memory Architecture

@ Caches
@ The MESI Protocol

@ Understand that MESI allows many caches to share a read-only
copy of a cache line and guarantees that they all have the value of
the most recent write.

@ At most one cache can have a writeable copy.

@ Understand how MESI combines write-through with write-back to
achieve this.

@ Able to define “sequential consistency”.

@ Able to trace what happens for a short sequence of memory
operations.

@ Example see pika4.

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018 6/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Message Passing Architectures

Greenstreet & Mitchell Midterm Review


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Performance

Greenstreet & Mitchell Midterm Review


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Sorting

Greenstreet & Mitchell Midterm Review


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Proofs

Greenstreet & Mitchell Midterm Review


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

Happy New Year

Greenstreet & Mitchell Midterm Review CpSc 418 — Feb. 16, 2018 11/11


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_16
https://en.wikipedia.org/wiki/2018

