
Introduction to GPUs

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – February 14, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 1 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

A Brief History of GPUs

Early 1980’s: bit-blit hardware for simple 2D graphics.
I Draw lines, simple curves, rectangles, triangles, and text.

1989 brought the SGI Geometry Engine: basic hardware
rendering through matrix-vector products.

I Coordinate transformations: rotation, translation, scaling,
perspective.

Moore’s Law growth led to more functions on GPUs
I Shading, texture mapping, physical simulation, . . .
I Rather than buidling dedicated hardware for each operation, GPUs

became progammable

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 2 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

GPUs exploit data parallelism

Perform the same operations on each vertex, triangle, etc.
The vertices, and triangles can be handled largely independently.
In the early 2000s some intrepid researchers with experience in
graphics and scientific computing realize they could use GPUs as
powerful scientific computers.
The same features make GPUs ideal for many machine learning
problems.
Big picture:

I This is why we teach concdpts
I Graphics, scientific computing, and machine learning all use a lot of

linear algebra.
I A solid math/science/CS foundation lets you draw the connections.
I You also need “build stuff” skilz – the first people to use GPUs for

non-graphics applications weren’t just solid at graphics and math,
they are also amazing programmers.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 3 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

High-End GPU Architecture

 | 7

GeForce GTX 1080 GPU Architecture In-Depth

Pascal GPUs are composed of different configurations of Graphics Processing Clusters (GPCs), Streaming
Multiprocessors (SMs), and memory controllers. Each SM is paired with a PolyMorph Engine that
handles vertex fetch, tessellation, viewport transformation, vertex attribute setup, and perspective
correction. The GP104 PolyMorph Engine also includes a new Simultaneous Multi-Projection unit that
will be described below. The combination of one SM plus one Polymorph Engine is referred to as a TPC.
If you aren’t familiar with the functions performed by the GPC and SM we suggest you first read the
Fermi whitepaper.

Figure 4: Block Diagram of the GP104 GPU

The nVidia GTX1080 GPU chip
SM = “Streaming Multiprocessor”
From:
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdfGreenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 4 / ??

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

A SM
GeForce GTX 1080 Whitepaper GeForce GTX 1080 GPU Architecture In-Depth

 | 8

The GeForce GTX 1080 and its GP104 GPU consist of four GPCs, twenty Pascal Streaming
Multiprocessors, and eight memory controllers. In the GeForce GTX 1080, each GPC ships with a
dedicated raster engine and five SMs. Each SM contains 128 CUDA cores, 256 KB of register file capacity,
a 96 KB shared memory unit, 48 KB of total L1 cache storage, and eight texture units.

Figure 5: GP104 SM Diagram

The SM is a highly parallel multiprocessor that schedules warps (groups of 32 threads) to CUDA cores
and other execution units within the SM. The SM is one of the most important hardware units within the
GPU; almost all operations flow through the SM at some point in the rendering pipeline. With 20 SMs,
the GeForce GTX 1080 ships with a total of 2560 CUDA cores and 160 texture units.

Each SM has 128 SPs
(“Streaming Processors”)
The GTX 1080 has a total of 2560
SPs

I An SP is what nVidia calls a
CUDA core.

I With all these cores, we can see
why CUDA program need so
many threads.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 5 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

Typical CPU Core

br?

inst inst
F

I

B

W

D$

R

G
EI$

PC

ctrl

op2

op1D
E
C

A
L
U

M
E
M

A RISC Pipeline

Instruction fetch, decode and other control takes
I most of the transistors and
I much more power

than actually performing ALU and other operations!

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 6 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

Typical GPU Core

E

inst inst
F

I

B

WA
L
U

R
E
G

M
E
M

R

G

E

B

WA
L
U

R
E
G

M
E
M

R

G

E

B

WA
L
U

R
E
G

I$

PC
D
E
C

ctrl

M
E
M

R

G

A SIMD Pipeline

Multiple execution pipelines execute the same instructions.
Each pipeline has its own registers and operates on separate data
values.
Commonly, pipelines access adjacent memory locations.
Great for operating on matrices, vectors, and other arrays.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 7 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

What about Memory?

off−chip

MEM

SM0 SM0 SM0

coalesce

MEM MEM

addr data

SWITCH

Global Memory

execution
pipeline

on−chip
memory

memory

Memory Architecture

On-chip “shared memory” switched between cores.
Off-chip references are “coalesced”: the hardware detects reads
from or writes to consecutive locations and combines them into
larger, block transfers.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 8 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

More about GPU Cores
Execution pipeline can be very deep: 20–30 stages.

I Many operations are floating point and take multiple cycles.
I A floating point unit that is deeply pipelined is easier to design, can

provide higher throughput, and use less power than a lower latency
design.

No bypasses
I Instructions block until instructions that they depend on have

completed execution.
I GPUs rely on extensive multi-threading to get performance.

Branches use predicated execution:
I Execute the then-branch code, disabling the “else-branch” threads.
I Execute the else-branch code, disabling the “then-branch” threads.
I The order of the two branches is unspecified.

All of these choices optimize the hardware for graphics
applications.
To get good performance, the programmer needs to understand
how the GPU hardware executes programs.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 9 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

Heterogenous Computing: Execution Model

A CUDA program consists of three kinds of functions:
Host functions.

I Called from code running on the host, but not the GPU.
I Run on the host CPU.
I In CUDA C, these look like normal functions.

Device functions.
I Called from code running on the GPU, but not the host.
I Run on the GPU.
I In CUDA C, these are declared with a device qualifier.

Global functions (“kernels”).
I Called by code running on the host CPU (“launching the kernel”).
I Run on the GPU.
I In CUDA C, these are declared with a global qualifier.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 10 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

Example: saxpy

Very common vector-vector operation.
Name comes from the Basic Linear Algebra Subroutines (BLAS):

saxpy = “single precision (scalar) a times x plus y”.
GPU version: requires both host and device code.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 11 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.

I We chose xi = i and yi = i2, but any value would do.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 12 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 13 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU (“launching the kernel”):
I Create d/256e blocks of threads.
I Each block consists of 256 threads.
I Each thread executes function saxpy(...).
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 14 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + y[i]) {

fprintf(stderr, "ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results by comparing against a serial implementation.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 15 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up and quit.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 16 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

We use built-in blockIdex.x and threadIdx.x indexes to
distinguish between different threads.

I Each thread has x, y and z versions of these indices, but we use
only one dimension x for this example.

We create one thread per vector element.
I Exploits GPU hardware support for multithreading.
I Keep in mind that there are a large but not infinite number of

threads available.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 17 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

saxpy: remarks
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);

Kernel launch has the form
saxpy<<<BlockDim,ThreadDim>>>(n, a, dev x, dev y);

Each block executes on a single SM
I We need at least as many blocks as we have SMs if we are going to fully

utilize the GPU.
Each SM dispatches instructions to 32 SPs at a time.

I A group of 32 threads that execute together are called a “warp”
I If the number of threads per warp is a multipe of 32, we get more efficient

execution.
I More importantly, accesses to the shared-memory (on-chip, per SM), and

global memory (off-chip) depends on warp-level optimizations to get good
performance.

The pipelines are deep
I The SM needs to have lots of warps to interleave in execution to achieve

good performances.
Conclusion: CUDA programs need thousands of threads.

I And you need to understand the block/warp/thread organization to get good
performance.

Greenstreet & Mitchell Introduction to GPUs CpSc 418 – ♥ Feb. 14, 2018 18 / ??

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_14
https://en.wikipedia.org/wiki/2018

