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Data Parallel Computing: slide ??
I Computation that does the “same” thing to lots of data
I Such problem are good candidates for parallel computation.
I Example: training neural networks

CUDA: Data Parallel Computing on GPUs
I GPUs and parallelism
I Program structure: slide 12
I Memory: slide 14
I A simple example: slide 15
I Launching kernels: slide 22
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Data Parallelism

When you see a for-loop:
I Is the loop-index used as an array index?
I Are the iterations independent?
I If so, you probably have data-parallel code.

Data-Parallel problems:
I Run well on GPUs because each element (or segment) of the array

can be handled by a different thread.
I Data parallel problems are good candidate for most parallel

techniques because the available parallelism grows with the
problem size.

I Compare with “task parallelism” where the problem is divided into
the same number of tasks regardless of its size.
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Which of the following loops are data parallel?
for(int i = 0; i < N; i++)

c[i] = a[i] + b[i].

dotprod = 0.0;
for(int i = 0; i < N; i++)

dotprod += a[i]*b[i];

for(int i = 1; i < N; i++)
a[i] = 0.5*(a[i-1] + a[i]);

for(int i = 1; i < N; i++)
a[i] = sqrt(a[i-1] + a[i]);

for(int i = 0; i < M; i++) {
for(int j = 0; j < N; j++) {

sum = 0.0;
for(int k = 0; k < L; k++)
sum += a[i,k]*b[k,j];

c[i,j] = sum;
} }
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Neurons
2018-02-09, 11:36 AMneuron.jpg 600×457 pixels

Page 1 of 1http://sciencewithme.com/wp-content/uploads/2015/04/neuron.jpg

Dendrites are inputs to other neurons.
Axon terminals are output to other neurons.
Simple model:

I a neuron computes a weighted sum of its inputs – each input is 0 or 1.
I if this sum is greater than a threshold, the neuron “fires” – it’s output

becomes one.

Output = 1, if
∑

i

Weight i Input i > Threshold

0, otherwise

We can revise the model to make it
I More biologically accurate – this is what neuro-biologists do.
I Easier to evaluate on a computer – this is what machine learning people do.
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Neural Networks, one layer
Lots of inputs, and lots of outputs.
A single input can influence many outputs:

I Real neurons can have thousands of connections.
I Three-dimensional wiring (in the brain) allows for complicated

interconnection.

For machine learning:

Output = Threshold (W Input)

I Input is a vector of input values.
I W is a matrix of weights. Each row of the matrix models a neuron.
I Threshold is a function that is applied to each element of W ∗ Input .
I To keep the computation tractable:

F W has many inputs and many outputs but is linear.
F Threshold has one input and one output but is non-linear.
F We don’t try to handle multi-in, multi-out, and non-linear all at the

same time.
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Deep Neural Networks

Mid1 = Threshold1 (W 1 Input)
Mid2 = Threshold2 (W 2 Mid1)

Output = ThresholdN (W N MidN−1)

The first layer of neurons computes the inputs to the next layer.
We keep going until we get to the output.
In theory, two-layers can compute anything.

I Deeper networks can be much smaller in total size – this is what
made Geoff Hinton famous.

I But, deep networks are hard to train.
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Training Neural Networks (Supervised)

Bring lots of dog treats. ,
Let’s say that I want to train a network to recognize all goats in a
photograph.
Find millions of photographs with the goats (if they have any)
labeled.
Set up a neural network with random values for the elements of
the W matrices.
Calculate the error metric of the network (initially, Error ≥ Awful)
Calculate the derivative of the error with respect to the elements of
the matrices.
Adjust the coefficients to lower error.
Repeat a whole lot of times.
End product: a neural network that can recognize goats in
pictures as well as an expert goat herd.
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Why we care (in CpSc 418)

Training neural networks is very data parallel.
I E.g., we can calculate the errors from each photo, and them

combine them with reduce.
I If we’ve got millions of photos, nearly all of the time is spent

computing the gradients (i.e. the derivatives).
I We can process each photo independently – in parallel

Note that we’ll be doing lots of matrix-vector and matrix-matrix
multiplications.

I This is officially a machine learning class; so we won’t be looking
for goat in photos here.

I But, we will see that many GPU/CUDA applications emphasize
algorithms such as matrix multiplication.

I Machine learning is a big motivation behind the huge grown in
popularity of matrix multiplication.
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GPUs and Data Parallelism

GPUs designed for data-parallel computing
I Each polygon or pixel can be an independent parallel computation.

GPUs designed for numerical computation
I Shading, coordinate transformations, physical animation are all

numerical computation problem.s
GPUs have become more programmable to handle a wider range
of graphics tasks.

I In the past 10-15 years, GPUs have become programmable enough
that they are useful for scientific computing and machine learning.

I At first, this was done by hard-core graphics/scientfic computing
people who figured out how to implement scientific computing
libraries using OpenGL!

I nVidia saw an opportunity and created CUDA to make it easier.
F OpenCL is a vendor independent alternative to CUDA.
F We use CUDA because presently it has more comprehensive support

and is easier for getting started.
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Key Features of GPU Architectures
GPUs are Single-Instruction, Multiple-Data (SIMD) machines

I Each instruction is executed for many data streams using many pipelines.
I This amortizes the cost of instruction fetch, decode, and control.
I The lock-step execution of the pipelines simplifies synchronization issues.

GPUs have deep pipelines
I Breaking instruction execution into small steps allows simple hardware to

get good performance.
I No bypasses – each instruction must go all the way through the pipeline

before another instruction can use the results.
GPUs have many execution units

I Typically 8 to 100+ SIMD processors, where each SIMD processor has
32-128 pipelines.

I A total of 1000 to 10000 pipelines executing in parallel.
Memory accesses are a major bottleneck

I With so many pipelines, a high-end GPU can perform ∼1013 floating point
operations per second.

I Memory bandwidth is ∼5.5 · 1011 bytes per second. With 4-bytes per
single precision floating point number, we need ∼70 floating point
operations per memory read or write to keep the pipelines busy.
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CUDA – the programmers view
Threads, warps, blocks, and CGMA – oh my!

How does the programmer cope with SIMD?
I Lots of threads – each thread runs on a separate pipeline.
I A group of thread that execute together, on on each pipeline of a

SIMD core are called “a warp”.
How does the programmer cope with long pipeline latencies,
∼30cycles?

I Lots of threads – interleave threads so that other threads dispatch
instructions while waiting for result of current instruction.

I Note that the need for threads to use multiple pipelines and the
need to use threads to high pipeline latency are multiplicative

I CUDA programs have thousands of threads.
How does the programmer use many SIMD cores?

I Multiple blocks of threads.
I Why are threads partitioned into blocks?

F Threads in the same block can synchronize and communicate easily
– they are running on the same SIMD core.

F Threads in different blocks cannot communicate with each other.
F There is some relaxation of this constraint in the latest GPUs.
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CUDA Program Structure

A CUDA program consists of three kinds of functions:
I Host functions:

F callable from code running on the host, but not the GPU.
F run on the host CPU;
F In CUDA C, these look like normal functions – they can be preceded

by the host qualifier.
I Device functions.

F callable from code running on the GPU, but not the host.
F run on the GPU;
F In CUDA C, these are declared with a device qualifier.

I Global functions
F called by code running on the host CPU,
F they execute on the GPU.
F In CUDA C, these are declared with a global qualifier.
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Structure of a simple CUDA program

A global function to called by the host program to execute on
the GPU.

I There may be one or more device functions as well.
One or more host functions, including main to run on the host
CPU.

I Allocate device memory.
I Copy data from host memory to device memory.
I “Launch” the device kernel by calling the global function.
I Copy the result from device memory to host memory.
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Execution Model: Memory

GPUCPU

caches DDR

memory
host

GDDR GPU, off−chip

"global" memory

Host memory: DRAM and the CPU’s caches
I Accessible to host CPU but not to GPU.

Device memory: GDDR DRAM on the graphics card.
I Accessible by GPU.
I The host can initiate transfers between host memory and device

memroy.
The CUDA library includes functions to:

I Allocate and free device memory.
I Copy blocks between host and device memory.
I BUT host code can’t read or write the device memory directly.
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Example: saxpy

saxpy = “Scalar a times x plus y”.
The device code.
The host code.
The running saxpy
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saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x and y indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.
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saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.
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saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.
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saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I add<<<ceil(n/256.0),256>>>(...) says to create dn/256e

blocks of threads.
I Each block consists of 256 threads.
I See slide 23 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.
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saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + y[i]) {

fprintf(stderr,
"ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results.
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saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.
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Launching Kernels

Terminology
I Data parallel code that runs on the GPU is called a kernel.
I Invoking a GPU kernel is called launching the kernel.

How to launch a kernel
I The host CPUS invokes a global function.
I The invocation needs to specify how many threads to create.
I Example:

F add<<<ceil(n/256.0),256>>>(...)
F creates

⌈
n

256

⌉
blocks

F with 256 threads each.
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Threads and Blocks
The GPU hardware combines threads into warps

I Warps are an aspect of the hardware.
I All of the threads of warp execute together – this is the SIMD part.
I The functionality of a program doesn’t depend on the warp details.
I But understanding warps is critical for getting good performance.

Each warp has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, it can

execute for all threads of the warp.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPU in lin25 supports 32 such warps of 32 threads each in a

“thread block.”
What if our application needs more threads?

I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).
I The GPU can swap thread-blocks in and out of main memory

F This is GPU system software that we don’t see as user-level
programmers.
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Compiling and running

lin25$ nvcc saxpy.cu -o saxpy
lin25$ ./saxpy 1000
The results match!
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But is it fast?

For the saxpy example as written here, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.
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Preview

February 13: Tuesday – Mark’s office hours
HW 4 goes out – midterm review, maybe some simple CUDA

February 14: GPU Architecture
Reading: Kirk & Hwu – Chapter 3
Homework: HW 3 earlybird (1:00pm).
PIKAs: PIKA 4 goes out.

February 15:
Homework: HW 3 due (1:00pm).

February 16: Midterm Review
PIKAs: PIKA 4 due (1:00pm).

February 19-23: break week
February 28: midterm – see next slide
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Review

What is data parallelism?
What is SIMD execution?
Think of a modification to the saxpy program and try it.

I You’ll probably find you’re missing programming features for many
things you’d like to try.

I What do you need?
I Stay tuned for upcoming lectures.
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