
Data Parallel Computing and CUDA

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – February 9, 2018

Data Parallel Computing: slide ??
I Computation that does the “same” thing to lots of data
I Such problem are good candidates for parallel computation.
I Example: training neural networks

CUDA: Data Parallel Computing on GPUs
I GPUs and parallelism
I Program structure: slide 12
I Memory: slide 14
I A simple example: slide 15
I Launching kernels: slide 22

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 1 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Data Parallelism

When you see a for-loop:
I Is the loop-index used as an array index?
I Are the iterations independent?
I If so, you probably have data-parallel code.

Data-Parallel problems:
I Run well on GPUs because each element (or segment) of the array

can be handled by a different thread.
I Data parallel problems are good candidate for most parallel

techniques because the available parallelism grows with the
problem size.

I Compare with “task parallelism” where the problem is divided into
the same number of tasks regardless of its size.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 2 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Which of the following loops are data parallel?
for(int i = 0; i < N; i++)

c[i] = a[i] + b[i].

dotprod = 0.0;
for(int i = 0; i < N; i++)

dotprod += a[i]*b[i];

for(int i = 1; i < N; i++)
a[i] = 0.5*(a[i-1] + a[i]);

for(int i = 1; i < N; i++)
a[i] = sqrt(a[i-1] + a[i]);

for(int i = 0; i < M; i++) {
for(int j = 0; j < N; j++) {

sum = 0.0;
for(int k = 0; k < L; k++)
sum += a[i,k]*b[k,j];

c[i,j] = sum;
} }

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 3 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Neurons
2018-02-09, 11:36 AMneuron.jpg 600×457 pixels

Page 1 of 1http://sciencewithme.com/wp-content/uploads/2015/04/neuron.jpg

Dendrites are inputs to other neurons.
Axon terminals are output to other neurons.
Simple model:

I a neuron computes a weighted sum of its inputs – each input is 0 or 1.
I if this sum is greater than a threshold, the neuron “fires” – it’s output

becomes one.

Output = 1, if
∑

i

Weight i Input i > Threshold

0, otherwise

We can revise the model to make it
I More biologically accurate – this is what neuro-biologists do.
I Easier to evaluate on a computer – this is what machine learning people do.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 4 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Neural Networks, one layer
Lots of inputs, and lots of outputs.
A single input can influence many outputs:

I Real neurons can have thousands of connections.
I Three-dimensional wiring (in the brain) allows for complicated

interconnection.

For machine learning:

Output = Threshold (W Input)

I Input is a vector of input values.
I W is a matrix of weights. Each row of the matrix models a neuron.
I Threshold is a function that is applied to each element of W ∗ Input .
I To keep the computation tractable:

F W has many inputs and many outputs but is linear.
F Threshold has one input and one output but is non-linear.
F We don’t try to handle multi-in, multi-out, and non-linear all at the

same time.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 5 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Deep Neural Networks

Mid1 = Threshold1 (W 1 Input)
Mid2 = Threshold2 (W 2 Mid1)

Output = ThresholdN (W N MidN−1)

The first layer of neurons computes the inputs to the next layer.
We keep going until we get to the output.
In theory, two-layers can compute anything.

I Deeper networks can be much smaller in total size – this is what
made Geoff Hinton famous.

I But, deep networks are hard to train.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 6 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Training Neural Networks (Supervised)

Bring lots of dog treats. ,
Let’s say that I want to train a network to recognize all goats in a
photograph.
Find millions of photographs with the goats (if they have any)
labeled.
Set up a neural network with random values for the elements of
the W matrices.
Calculate the error metric of the network (initially, Error ≥ Awful)
Calculate the derivative of the error with respect to the elements of
the matrices.
Adjust the coefficients to lower error.
Repeat a whole lot of times.
End product: a neural network that can recognize goats in
pictures as well as an expert goat herd.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 7 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Why we care (in CpSc 418)

Training neural networks is very data parallel.
I E.g., we can calculate the errors from each photo, and them

combine them with reduce.
I If we’ve got millions of photos, nearly all of the time is spent

computing the gradients (i.e. the derivatives).
I We can process each photo independently – in parallel

Note that we’ll be doing lots of matrix-vector and matrix-matrix
multiplications.

I This is officially a machine learning class; so we won’t be looking
for goat in photos here.

I But, we will see that many GPU/CUDA applications emphasize
algorithms such as matrix multiplication.

I Machine learning is a big motivation behind the huge grown in
popularity of matrix multiplication.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 8 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

GPUs and Data Parallelism

GPUs designed for data-parallel computing
I Each polygon or pixel can be an independent parallel computation.

GPUs designed for numerical computation
I Shading, coordinate transformations, physical animation are all

numerical computation problem.s
GPUs have become more programmable to handle a wider range
of graphics tasks.

I In the past 10-15 years, GPUs have become programmable enough
that they are useful for scientific computing and machine learning.

I At first, this was done by hard-core graphics/scientfic computing
people who figured out how to implement scientific computing
libraries using OpenGL!

I nVidia saw an opportunity and created CUDA to make it easier.
F OpenCL is a vendor independent alternative to CUDA.
F We use CUDA because presently it has more comprehensive support

and is easier for getting started.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 9 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Key Features of GPU Architectures
GPUs are Single-Instruction, Multiple-Data (SIMD) machines

I Each instruction is executed for many data streams using many pipelines.
I This amortizes the cost of instruction fetch, decode, and control.
I The lock-step execution of the pipelines simplifies synchronization issues.

GPUs have deep pipelines
I Breaking instruction execution into small steps allows simple hardware to

get good performance.
I No bypasses – each instruction must go all the way through the pipeline

before another instruction can use the results.
GPUs have many execution units

I Typically 8 to 100+ SIMD processors, where each SIMD processor has
32-128 pipelines.

I A total of 1000 to 10000 pipelines executing in parallel.
Memory accesses are a major bottleneck

I With so many pipelines, a high-end GPU can perform ∼1013 floating point
operations per second.

I Memory bandwidth is ∼5.5 · 1011 bytes per second. With 4-bytes per
single precision floating point number, we need ∼70 floating point
operations per memory read or write to keep the pipelines busy.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 10 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

CUDA – the programmers view
Threads, warps, blocks, and CGMA – oh my!

How does the programmer cope with SIMD?
I Lots of threads – each thread runs on a separate pipeline.
I A group of thread that execute together, on on each pipeline of a

SIMD core are called “a warp”.
How does the programmer cope with long pipeline latencies,
∼30cycles?

I Lots of threads – interleave threads so that other threads dispatch
instructions while waiting for result of current instruction.

I Note that the need for threads to use multiple pipelines and the
need to use threads to high pipeline latency are multiplicative

I CUDA programs have thousands of threads.
How does the programmer use many SIMD cores?

I Multiple blocks of threads.
I Why are threads partitioned into blocks?

F Threads in the same block can synchronize and communicate easily
– they are running on the same SIMD core.

F Threads in different blocks cannot communicate with each other.
F There is some relaxation of this constraint in the latest GPUs.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 11 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

CUDA Program Structure

A CUDA program consists of three kinds of functions:
I Host functions:

F callable from code running on the host, but not the GPU.
F run on the host CPU;
F In CUDA C, these look like normal functions – they can be preceded

by the host qualifier.
I Device functions.

F callable from code running on the GPU, but not the host.
F run on the GPU;
F In CUDA C, these are declared with a device qualifier.

I Global functions
F called by code running on the host CPU,
F they execute on the GPU.
F In CUDA C, these are declared with a global qualifier.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 12 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Structure of a simple CUDA program

A global function to called by the host program to execute on
the GPU.

I There may be one or more device functions as well.
One or more host functions, including main to run on the host
CPU.

I Allocate device memory.
I Copy data from host memory to device memory.
I “Launch” the device kernel by calling the global function.
I Copy the result from device memory to host memory.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 13 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Execution Model: Memory

GPUCPU

caches DDR

memory
host

GDDR GPU, off−chip

"global" memory

Host memory: DRAM and the CPU’s caches
I Accessible to host CPU but not to GPU.

Device memory: GDDR DRAM on the graphics card.
I Accessible by GPU.
I The host can initiate transfers between host memory and device

memroy.
The CUDA library includes functions to:

I Allocate and free device memory.
I Copy blocks between host and device memory.
I BUT host code can’t read or write the device memory directly.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 14 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Example: saxpy

saxpy = “Scalar a times x plus y”.
The device code.
The host code.
The running saxpy

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 15 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x and y indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 16 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 17 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 18 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I add<<<ceil(n/256.0),256>>>(...) says to create dn/256e

blocks of threads.
I Each block consists of 256 threads.
I See slide 23 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 19 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result
if(yy[i] != a*x[i] + y[i]) {

fprintf(stderr,
"ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 20 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 21 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Launching Kernels

Terminology
I Data parallel code that runs on the GPU is called a kernel.
I Invoking a GPU kernel is called launching the kernel.

How to launch a kernel
I The host CPUS invokes a global function.
I The invocation needs to specify how many threads to create.
I Example:

F add<<<ceil(n/256.0),256>>>(...)
F creates

⌈
n

256

⌉
blocks

F with 256 threads each.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 22 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Threads and Blocks
The GPU hardware combines threads into warps

I Warps are an aspect of the hardware.
I All of the threads of warp execute together – this is the SIMD part.
I The functionality of a program doesn’t depend on the warp details.
I But understanding warps is critical for getting good performance.

Each warp has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, it can

execute for all threads of the warp.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPU in lin25 supports 32 such warps of 32 threads each in a

“thread block.”
What if our application needs more threads?

I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).
I The GPU can swap thread-blocks in and out of main memory

F This is GPU system software that we don’t see as user-level
programmers.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 23 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Compiling and running

lin25$ nvcc saxpy.cu -o saxpy
lin25$./saxpy 1000
The results match!

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 24 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

But is it fast?

For the saxpy example as written here, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 25 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Preview

February 13: Tuesday – Mark’s office hours
HW 4 goes out – midterm review, maybe some simple CUDA

February 14: GPU Architecture
Reading: Kirk & Hwu – Chapter 3
Homework: HW 3 earlybird (1:00pm).
PIKAs: PIKA 4 goes out.

February 15:
Homework: HW 3 due (1:00pm).

February 16: Midterm Review
PIKAs: PIKA 4 due (1:00pm).

February 19-23: break week
February 28: midterm – see next slide

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 26 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

Review

What is data parallelism?
What is SIMD execution?
Think of a modification to the saxpy program and try it.

I You’ll probably find you’re missing programming features for many
things you’d like to try.

I What do you need?
I Stay tuned for upcoming lectures.

Greenstreet & Mitchell Data Parallel & CUDA CpSc 418 – Feb. 9, 2018 27 / 27

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_9
https://en.wikipedia.org/wiki/2018

