
Implementing Bitonic Sort

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – February 7, 2018

Finish deriving the bitonic sort algorithm
Sorting networks in practice

I Merging networks
I Higher-Radix algorithms

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 1 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


The handy lemma, bitonic-version

Let X be a bitonic sequence of 0s and 1s. Let N = length(X ).
Let

Zi = min(Xi ,Xi+N
2
), 0 ≤ i < N

2

Zi = max(Xi−N
2
,Xi),

N
2 ≤ i < N

I Then either Z0, . . . , Z N
2 −1 is all 0s or Z N

2
, . . . , ZN−1 is all 1s, and

I The other half of Z is bitonic.
I Note: this implies that every element in the lower half is ≤ every

element in the upper half.

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 2 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


Proving the handy lemma, bitonic-version

Assume X ∈ 0∗1∗0∗. The other case is analagous.
Let i be the index of the first 1 in X. i = N if X is all 0s.
Let j be the index of the first 0 in the second segment of 0s in X .
j = N if X ∈ 0∗1∗.
Note that j − i is the number of 1s in X .

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 3 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


Proof: case j − i ≤ N
2

X0, . . . , Xi−1 are all 0s. Therefore
Z0, . . . , Zi−1 are all 0s.
Xi+N

2
, . . . , XN−1 are all 0s because i + N

2 ≥ j . Therefore

Zi , . . . , Z N
2 −1 are all 0s.

∴

Z0, . . . , Z N
2 −1 are all 0s.

If i ≤ N
2 , then

I Z N
2
, . . . Zj−1 are all 1s,

I Zj , . . . , Zi+ N
2 −1 are all 0s,

I Zi+ N
2
, . . . ZN−1 are all 1s,

I ∴
I Z N

2
, . . . , ZN−1 is bitonic.

Otherwise, i ≥ N
2 ,

I X0, . . . , X N
2 −1 are all 0s.

I Z N
2
, . . . , ZN−1 is the same sequence as X N

2
, . . . , XN−1.

I ∴
I Z N

2
, . . . , ZN−1 is bitonic.

The proof when j − i ≥ N
2 is analagous.

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 4 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


Bitonic Merge

To merge N items:
Perform compare-and-swaps with a stride of N/2.
Now, every element in the top half is greater than every element in
the bottom half. Each half is bitonic.
Continue with a bitonic merge of N/2 items for each half.

I Then four bitonic merges of N/4 values;
I Then eight bitonic merges of N/8 values;
I . . .
I Finally N/2 merges of 2 values. The base-case – each merge of

two values can be done with a singel compare and swap.

How many compare and swap operations?
What is the parallel time?

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 5 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


Bitonic Sort: The big picture

Sort N values
Divide into two halves of size N

2 .
I Parallel: sort each half.
I This is a typical, divide-and-conquer approach.
I Now, we just need to merge the two halves.

Combine the two, sorted halves into one bitonic sequence of
length N.
Use the method described on slide 2 to create a clean half of
length N

2 and a bitonic half of length N
2 .

Recursively merge the two halves.
I Parallel: merge each half.
I The recursion works on sequences of length N, N

2 , N
4 , . . . , 2.

I Total parallel time: log2 N.
I Total number of compare-and-swaps N

2 log2 N.

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 6 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


Complexity of Bitonic Sort

The whole algorithm:
I Use N

2 compare-and-swap operations in parallel to sort pairs of
elements.

I Perform a 4-way bitonic merge for each pair of length-2 sorted
sequences to obtain a length-4 sorted sequence.

I Perform a 8-way bitonic merge for each pair of length-4 sorted
sequences to obtain a length-8 sorted sequence.

I . . .
I Perform a N-way bitonic merge for the two length- N

2 sorted
sequences to obtain the length-N sorted sequence.

Complexity
Parallel time: ∑

k=1

log2 Nk = O(log2 N)

Total number of compare and swaps: O(N log2 N).

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 7 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018


Midterm: Feb. 28

This lecture is the cut-off for material that will be covered on the
midterm.

Greenstreet & Mitchell Implementing Bitonic Sort CpSc 418 – Feb. 7, 2018 8 / 7

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_7
https://en.wikipedia.org/wiki/2018

