
Implementing Bitonic Sort
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CpSc 418 – February 7, 2018

Finish deriving the bitonic sort algorithm
Sorting networks in practice

I Merging networks
I Higher-Radix algorithms
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The handy lemma, bitonic-version

Let X be a bitonic sequence of 0s and 1s. Let N = length(X ).
Let

Zi = min(Xi ,Xi+N
2
), 0 ≤ i < N

2

Zi = max(Xi−N
2
,Xi),

N
2 ≤ i < N

I Then either Z0, . . . , Z N
2 −1 is all 0s or Z N

2
, . . . , ZN−1 is all 1s, and

I The other half of Z is bitonic.
I Note: this implies that every element in the lower half is ≤ every

element in the upper half.
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Proving the handy lemma, bitonic-version

Assume X ∈ 0∗1∗0∗. The other case is analagous.
Let i be the index of the first 1 in X. i = N if X is all 0s.
Let j be the index of the first 0 in the second segment of 0s in X .
j = N if X ∈ 0∗1∗.
Note that j − i is the number of 1s in X .
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Proof: case j − i ≤ N
2

X0, . . . , Xi−1 are all 0s. Therefore
Z0, . . . , Zi−1 are all 0s.
Xi+N

2
, . . . , XN−1 are all 0s because i + N

2 ≥ j . Therefore

Zi , . . . , Z N
2 −1 are all 0s.

∴

Z0, . . . , Z N
2 −1 are all 0s.

If i ≤ N
2 , then

I Z N
2
, . . . Zj−1 are all 1s,

I Zj , . . . , Zi+ N
2 −1 are all 0s,

I Zi+ N
2
, . . . ZN−1 are all 1s,

I ∴
I Z N

2
, . . . , ZN−1 is bitonic.

Otherwise, i ≥ N
2 ,

I X0, . . . , X N
2 −1 are all 0s.

I Z N
2
, . . . , ZN−1 is the same sequence as X N

2
, . . . , XN−1.

I ∴
I Z N

2
, . . . , ZN−1 is bitonic.

The proof when j − i ≥ N
2 is analagous.
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Bitonic Merge

To merge N items:
Perform compare-and-swaps with a stride of N/2.
Now, every element in the top half is greater than every element in
the bottom half. Each half is bitonic.
Continue with a bitonic merge of N/2 items for each half.

I Then four bitonic merges of N/4 values;
I Then eight bitonic merges of N/8 values;
I . . .
I Finally N/2 merges of 2 values. The base-case – each merge of

two values can be done with a singel compare and swap.

How many compare and swap operations?
What is the parallel time?
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Bitonic Sort: The big picture

Sort N values
Divide into two halves of size N

2 .
I Parallel: sort each half.
I This is a typical, divide-and-conquer approach.
I Now, we just need to merge the two halves.

Combine the two, sorted halves into one bitonic sequence of
length N.
Use the method described on slide 2 to create a clean half of
length N

2 and a bitonic half of length N
2 .

Recursively merge the two halves.
I Parallel: merge each half.
I The recursion works on sequences of length N, N

2 , N
4 , . . . , 2.

I Total parallel time: log2 N.
I Total number of compare-and-swaps N

2 log2 N.
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Complexity of Bitonic Sort

The whole algorithm:
I Use N

2 compare-and-swap operations in parallel to sort pairs of
elements.

I Perform a 4-way bitonic merge for each pair of length-2 sorted
sequences to obtain a length-4 sorted sequence.

I Perform a 8-way bitonic merge for each pair of length-4 sorted
sequences to obtain a length-8 sorted sequence.

I . . .
I Perform a N-way bitonic merge for the two length- N

2 sorted
sequences to obtain the length-N sorted sequence.

Complexity
Parallel time: ∑

k=1

log2 Nk = O(log2 N)

Total number of compare and swaps: O(N log2 N).
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Midterm: Feb. 28

This lecture is the cut-off for material that will be covered on the
midterm.
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