
The Bitonic Sort Algorithm

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – February 5, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 1 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


Motivation

Merge sort is a great sequential sorting algorithm
I But, the final merge step(s) is (are) a sequential bottleneck.
I Lower bound on run time of O(N) implies an upper bound on

speed-up of ∼ log N.
Merging and the 0-1 principle

I We’ll see that parallel merge is easy for some special cases.
Bitonic sequences

I How to exploit the special cases.
Bitonic sort

I Merge sort with a parallel merge step.
I Run times is O(N

P (log N + (log P)2)) + λ log N.
I Useful in practice. Key ideas from bitonic sort are used in other,

faster parallel sorting algorithms.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 2 / 10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


0-1 Review

X -4 ≤ X 1 ≤ X 2 ≤ X 3 ≤ X 6 ≤ X 8 ≤ X 9 ≤ X 12 ≤ X 12 < X
3 1 1 1 1 0 0 0 0 0

12 1 1 1 1 1 1 1 1 0
−4 1 0 0 0 0 0 0 0 0

2 1 1 1 0 0 0 0 0 0
8 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 1 0 0
6 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0

If a sorting network correctly sorts the original data, X.
I Then by the monotonicity lemma, it correctly sorts all sequences that we can

get by thresholding X.
I Conversely, by showing that it sorts all of the thresholded sequences correctly, we

can conclude that it sorts X correctly.

Intuitively, a 0-1 argument considers all of the thresholded sequences at the
same time.

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 3 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


Monotonic sequences
A sequence, X0, X1, . . . , XN−1 is monotonically increasing if

X0 ≤ X1 ≤ · · · ≤ XN−1

A sequence, X0, X1, . . . , XN−1 is monotonically decreasing if

X0 ≥ X1 ≥ · · · ≥ XN−1

A sequence is monotonic if it is either monotonically increasing
or monotonically decreasing.
A sequence is strictly monotonically increasing if

X0 < X1 < · · · < XN−1

I Likewise for strictly monotonically decreasing or strictly monotonic.
I We won’t use the “strict” versions very much – they aren’t very

useful with 0-1 sequences. ,

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 4 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


A handy lemma
Let X be a monotonically increasing sequence of 0s and 1s of
length N. Let Y be a monotonically decreasing sequence of 0s
and 1s of length N.
Let Z be the sequence of length 2N with

Zi = min(Xi ,Yi), 0 ≤ i < N
= max(Xi−N ,Yi−N), N ≤ i < 2N

Then, either Z0, Z1, . . . , ZN−1 are all 0s, or ZN , ZN+1, . . . Z2N−1 are
all 1s.
Proof (details on the whiteboard):

I Let zcount(X ) denote the number of 0s in X .
I If zcount(X ) + zcount(Y ) ≥ N, then Z0, . . . , ZN−1 are all 0s.
I If zcount(X ) + zcount(Y ) ≤ N, then ZN , . . . , Z2N−1 are all 1s.
I 2

What about the other half?
I It’s either 0∗1∗0∗ or 1∗0∗1∗.

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 5 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


Bitonic Sequences

A sequence is bitonic if it consists of a monotonically increasing
sequence followed by a monotonically decreasing sequence.

I Either of those sub-sequences can be empty.
I We’ll also consider a monotonically decreasing followed by

monotonically increasing sequence to be bitonic.
Properties of bitonic sequence

I Any subsequence of a bitonic sequence is bitonic.
I Let A be a bitonic sequence consisting of 0s and 1s. Let A0 and A1

be the even- and odd-indexed subsequences of A.
I The number of 1s in A0 and A1 differ by at most 1.

F We’ll examine the number of 0s on slide ??.

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 6 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


The handy lemma, bitonic-version

Let X be a bitonic sequence of 0s and 1s. Let N = length(X ).
Let

Zi = min(Xi ,Xi+N
2
), 0 ≤ i < N

2

Zi = max(Xi−N
2
,Xi),

N
2 ≤ i < N

I Then either Z0, . . . , Z N
2 −1 is all 0s or Z N

2
, . . . , ZN−1 is all 1s, and

I The other half of Z is bitonic.
I Note: this implies that element in the lower half is ≤ every element

in the upper half.
Proof (the easy cases):

I If X0, . . . , X N
2 −1 is all 0s, then Z = X , Z0, . . . , Z N

2 −1 is all 0s, and
Z N

2
, . . . , ZN−1 is bitonic – it’s a subsequence of a bitonic sequence.

I Likewise, if X0, . . . , X N
2 −1 is all 1s, or if X N

2
, . . . , XN−1 is all 0s or all

1s.
I Need to consider the case when both X0, . . . , X N

2 −1 and X N
2
, . . . ,

XN−1 are mixed.

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 7 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


Case: both halves of X are mixed

Consider the case where X ∈ 0∗1∗0∗ – the other case is equivalent.
Let i be the smallest integer with 0 ≤ i < N

2 such that Xi = 1.

Let j be the smallest integer with N
2 ≤ j < N such that Xj = 0.

If j − i ≤ N
2 , then

I Z0, . . . , Z N
2 −1 is all 0s, and

I Z N
2
, . . . ,ZN−1 ∈ 1∗0∗1∗.

If j − i ≥ N
2 , then

I Z0, . . . ,Z N
2 −1 ∈ 0∗1∗0∗.

I Z N
2
, . . . , ZN−1 is all 1s.

2

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 8 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


Bitonic Sort: The big picture

Sort N values
Divide into two halves of size N

2 .
I Parallel: sort each half.
I This is a typical, divide-and-conquer approach.
I Now, we just need to merge the two halves.

Combine the two, sorted halves into one bitonic sequence of
length N.
Use the method described on slide 7 to create a clean half of
length N

2 and a bitonic half of length N
2 .

Recursively merge the two halves.
I Parallel: merge each half.
I The recursion works on sequences of length N, N

2 , N
4 , . . . , 2.

I Total parallel time: log2 N.
I Total number of compare-and-swaps N

2 log2 N.

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 9 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018


Complexity of Bitonic Sort

The whole algorithm:
I Use N

2 compare-and-swap operations in parallel to sort pairs of
elements.

I Perform a 4-way bitonic merge for each pair of length-2 sorted
sequences to obtain a length-4 sorted sequence.

I Perform a 8-way bitonic merge for each pair of length-4 sorted
sequences to obtain a length-8 sorted sequence.

I . . .
I Perform a N-way bitonic merge for the two length- N

2 sorted
sequences to obtain the length-N sorted sequence.

Complexity
Parallel time: ∑

k=1

log2 Nk = O(log2 N)

Total number of compare and swaps: O(N log2 N).

Greenstreet & Mitchell The Bitonic Sort Algorithm CpSc 418 – Feb. 5, 2018 10 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_5
https://en.wikipedia.org/wiki/2018

