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Pause, Breath, Where are We?

We are ahead of schedule! ,
Introduction to Erlang: done.
Reduce & Scan: done.
Parallel Architecture: done.
Parallel Performance: done.
Parallel Sorting: starting today
Data Parallel Computation: probably start on Feb. 14.
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Pause, Breath, Where are We?
I got the feedback that Wednesday’s lecture was kind of fast.

IDon’t Panic
I What do you need to know?

F There are many models for parallel computation.
F RAM – the model used for nearly all sequential algorithm analysis.
F PRAM – a parallel version of RAM that is unrealistic because it

ignores communication costs and memory access costs. Primarily
of theoretical interest.

F Work-Span – models dependencies. Provides a clear basis for
Amdahl’s Law and Gustafson’s law. Ignores communication costs.
Trying to add communication to Work-Span is messy.

F CTA – the model we use in class. You can call it the “λ is big” model.
Directly addresses communication costs. Need to refine the
model if we are considering implementations with big messages.

F logP – CTA with a few more parameters. Better known that CTA.
I’m open to having an “Ask Me Anything” lecture sometime in the
next two weeks if that will help

I If you’d like such a lecture, post questions and topics to piazza. If
there is demand, I’ll give the lecture.
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Parallelizing Mergesort
We could use reduce?
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Parallelizing Mergesort
We could use reduce?
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Total time:
N
P (log N + 2(P − 1)− log P) + (log P)λ ≥ N

Thus, SpeedUp ≤ log N.
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Parallelizing Quicksort

How would you write a parallel version of quicksort?
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Sorting Networks

Sorting Network for 2−elements
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A Sorting Network for 3−elements
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Sorting Networks – Drawing
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Sorting Networks – Examples
sort−4 sort−5 (v1) sort−5 (v2)

sort−8

the same color
Operations of

can be performed
in parallel.

See: http://pages.ripco.net/˜jgamble/nw.html
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Sorting Networks: Definition
Structural version:

A sorting network is an acyclic network consisting of
compare-and-swap modules.

I Each primary input is connected either to the input of exactly one
compare-and-swap module or to exactly one primary output.

I Each compare-and-swap input is connected either to a primary
input or to the output of exactly one compare-and-swap module.

I Each compare-and-swap output is connected either to a primary
output or to the input of exactly one compare-and-swap module.

I Each primary output is connected either to the output of exactly one
compare-and-swap module or to exactly one primary input.

More formally, a sorting network is either
I the identity network (no compare and swap modules).
I a sorting network, S composed with a compare-and-swap module

such that two outputs of S are the inputs to the compare-and-swap,
and the outputs of the compare-and-swap are outputs of the new
sorting network (along with the other outputs of the original
network).
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Sorting Networks: Definition
Decision-tree version:

x2:x1

x1

x0

x2

y1

y0

y2

x0:x1

x2

x1

x0

X x2

x0

x1

x0

x2

x1

x1:x2

x0:x2

x0:x1

x1

x0

x2

x0

x1

x2

x1

x2

x0

X

x0:x2

y2:

y0:

y1:

x1:x2

start

≤

≤

≤

≤

≤≤≤ >

>

>

>

> >>

Let v be an arbitrary vertex of a decision tree, and let xi and xj be
the variables compared at vertex v .
A decision tree is a sorting network iff for every such vertex, the
left subtree is the same as the right subtree with xi and xj
exchanged.
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The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0s and
1s, then it correctly sorts inputs consisting of arbitrary (comparable)
values.

The 0-1 principle doesn’t hold for arbitrary algorithms:
I Consider the following linear-time “sort”
I In linear time, count the number of zeros, nz, in the array.
I Set the first nz elements of the array to zero.
I Set the remaining elements to one.
I This correctly sorts any array consisting only of 0s and 1s, but does

not correctly sort other arrays.

By restricting our attention to sorting networks, we can use the 0-1
principle.
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The 0-1 Principle: Proof Sketch

We will show the contrapositive: if y is not sorted properly, then
there exists an x̃ consisting of only 0s and 1s that is not sorted
properly.
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Choose i < j such that yi > yj .
Let x̃k = 0 if xk < xi and x̃k = 1 otherwise.

I Clearly x̃ consists only of 0s and 1s.
I We will show that the sorting network does not sort correctly with

input x̃ .
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Monotonicity Lemma
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Lemma: sorting networks commute with monotonic functions.

Let S be a sorting network with n inputs an N outputs.
I I’ll write x0, . . . , xn−1 to denote the inputs of S.
I I’ll write y0, . . . , yn−1 to denote the outputs of S.

Let f be a monotonic function.
I If x ≤ y , then f (x) ≤ f (y).

The monotonicity lemma says
I applying S and then f produces the same result as
I applying f and then S.

Observation: f(X) when X < Xi -> 0; f( ) -> 1.
is monotonic.
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Compare-and-Swap Commutes with Monotonic
Functions

max(f(x), f(y))f
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Compare-and-Swap commutes with monotonic functions.

Case x ≤ y :

f (x) ≤ f (y), because f is monotonic.
max(f (x), f (y)) = f (y), because f (x) ≤ f (y)
max(f (x), f (y)) = f (max(x , y)), because x ≤ y

Case x ≥ y : equivalent to the x ≤ y case.
2
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The monotonicity lemma – proof sketch
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Induction on the structure of the sorting network, S.
Base case:

The simplest sorting network, S0 is the identity function.
It has 0 compare-and-swap modules.
Because S0 is the identity function, S0(f (x)) = f (x) = f (S0(x)).
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The monotonicity lemma – induction step
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Let Sm be a sorting network with n inputs and let 0 ≤ i < j < n.
Let Sm+1 be the sorting network obtained by composing a
compare-and-swap module with outputs i and j of Sm.
We can “move” the f operations from the outputs of the new
compare-and-swap to the inputs (see slide 14).
We can “move” the f operations from the outputs Sm to the inputs
(induction hypothesis).
Therefore, Sm+1 commutes with f .
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The 0-1 Principle
If a sorting network correctly sorts all inputs consisting only of 0s and
1s, then it correctly sorts inputs of any values.
I’ll prove the contrapositive.

If a sorting network does not correctly sort inputs of any values, then it
does not correctly sort all inputs consisting only of 0s and 1s.

Let S be a sorting network, let x be an input vector, and let y = S(x),
such that there exist i and j with i < j such that yi > yj .

Let f (x) = 0, if x < yi
= 1, if x ≥ yi

ỹ = S(f (x))

By the definition of f , f (x) is an input consisting only of 0s and 1s.

By the monotonicity lemma, ỹ = f (y). Thus,

ỹi = f (yi) = 1 > 0 = f (yj) = ỹj

Therefore, S does not correctly sort an input consisting only of 0s and
1s.

2
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Summary

Sequential sorting algorithms don’t parallelize in an “obvious” way
because they tend to have sequential bottlenecks.

I Later, we’ll see that we can combine ideas from sorting networks
and sequential sorting algorithms to get practical, parallel sorting
algorithms.

Sorting networks are a restricted class of sorting algorithms
I Based on compare-and-swap operations.
I The parallelize well.
I They don’t have control-flow branches – this makes them attractive

for architectures with large branch-penalties.
The zero-one principle:

I If a sorting-network sorts all inputs of 0s and 1s correctly, then it
sorts all inputs correctly.

I This allows many sorting networks to be proven correct by counting
arguments.

Greenstreet & Mitchell Sorting Networks CpSc 418 – Feb. 2, 2018 18 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_2
https://en.wikipedia.org/wiki/2018


Preview

February 5: Bitonic Sorting
February 7: Implementing Bitonic Sorting
February 9: Intro. to GPU computing or “Ask Me Anything”

Reading: Kirk & Hwu – Chapter 2
February 13: Tuesday – Mark’s office hours

Homework: HW 3 earlybird (11:59pm).
HW 4 goes out – midterm review, maybe some simple CUDA

February 14: GPUs & CUDA
Reading: Kirk & Hwu – Chapter 3
Homework: HW 3 due (11:59pm).

February 16: GPus & CUDA
February 19-23: break week
February 28: midterm – see next slide
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The Midterm:

February 28
Open book, open notes, open anything on paper, calculators
allowed

I This is a “do you understand the concepts?” test, not a “did you
memorize a bunch of trivia?” test.

I I’ll aim for zero to minimal need for calculators, but won’t guarantee
zero.

I Previous midterms are on the resources page. We’ll cover the
same range of concepts, but the questions won’t just be repeats of
previous questions with different numbers.

Two venues: this course is slightly over-subscribed.
I We expect to hold the midterm in two rooms at the same time.
I I’ll announce the details when I know them.
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Review 1

Why don’t traditional, sequential sorting algorithms parallelize
well?
Try to parallelize another sequential sorting algorithm such as
heap sort? What issues do you encounter?
Consider network sort-5(v2) from slide 8. Use the 0-1 principle to
show that it sorts correctly?

I What if the input is all 0s?
I What if the input has exactly one 1?
I What if the input has exactly two 1s?
I What if the input has exactly three 1s? Note, it may be simpler to

think of this the input having exactly two 0s.
I What if the input has exactly four 1s? Five ones?
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Review 2

sort−5 (v4)sort−5 (v3)

Consider the two sorting networks shown above. One sorts correctly;
the other does not.

Identify the network that sorts correctly, and prove it using the 0-1
principle.
Show that the other network does not sort correctly by giving an
input consisting of 0s and 1s that is not sorted correctly.
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Review 3
I claimed that max and min can be computed without branches. We could
work out the hardware design for a compare-and-swap module. Instead,
consider an algorithm that takes two “words” as arguments – each word is
represented as a list of characters. The algorithm is supposed to output the
two words, but in alphabetical order. For example:

% See: http://www.ugrad.cs.ubc.ca/˜cs418/2017-2/lecture/src/cas.erl
compareAndSwap(L1, L2) when is list(L1), is list(L2) ->
compareAndSwap(L1, L2, []).

compareAndSwap([], L2, X) ->
{lists:reverse(X), lists:reverse(X, L2)};

compareAndSwap(L1, [], X) ->
{lists:reverse(X), lists:reverse(X, L1)};

compareAndSwap([H1 | T1], [H2 | T2], X) when H1 == H2 ->
compareAndSwap(T1, T2, [H1 | X]);

compareAndSwap(L1=[H1 | ], L2=[H2 | ], X) when H1 < H2 ->
{lists:reverse(X, L1), lists:reverse(X, L2)};

compareAndSwap(L1, L2, X) ->
{lists:reverse(X, L2), lists:reverse(X, L1)}.

Show that compareAndSwap can be implemented as a scan operation.
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