Causes of Performance Loss in Parallel Computing

Mark Greenstreet and lan M. Mitchell

CpSc 418 — January 29, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & lan M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 1/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Table of Contents

Q Parallel Overhead
@ Communication
@ Sychronization
@ Computation
@ Memory

© Limited Parallelism
@ Serial Dependency
@ |dle Processors
@ Resource Contention

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 2/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Objectives

At the end of this lecture, you should be able to:
@ Describe the main causes of performance loss when parallelizing
algorithms.

@ Explain how these losses arise in both message passing and
shared memory architectures.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 3/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Causes of Performance Loss: Overview

@ Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
@ In practice, this rarely happens because of:
» Overhead: Work that the parallel program has to do that is not
needed in the sequential program.

» Limited Parallelism: Not every processor can be kept (usefully)
busy all the time.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 4/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Causes of Performance Loss: Overhead

Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.
@ Communication:

» The processes (or threads) of a parallel program need to
communicate.

@ Synchronization:

» The processes (or threads) of a parallel program need to
coordinate.

» This can be to avoid interference, to ensure that a result is ready
before it is used, etc.

@ Computation:

» Recomputing a result is often cheaper than communicating it.
@ Memory Overhead:

» Each process may have its own copy of a data structure.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 5/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Communication Overhead

leaf: | mid: root:
create list of N/P elements | wait for readies: i wait for readies
send 'ready’ to parent | send ready to parent | start timer
wait for 'go’ wait for go: send gos
count 3s in the list | send gos to children | wait for totals
send total to parent i wait for tallies i compute grand total
| send total to parent | end timer

1 report results

@ In a parallel program, data must be sent between processors.
@ The time to send and receive data is overhead.

@ Communication overhead occurs with both shared-memory and
message passing machines and programs.

@ Example: Reduce tree (e.g. Count 3s).
@ Example: MRR figure 2.13
» MRR appears to have a narrower definition of “overhead.”

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 6/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Communication overhead (shared-memory)

@ In a shared memory architecture:

» Each core has its own cache.

» The caches communicate to make sure that all references from
different cores to the same address look like there is one, common
memory.

» It takes longer to access data from a remote cache / memory than
from the local cache / memory.

@ False sharing can create communication overhead even when
there is no logical sharing of data.

» False sharing occurs if two processors repeatedly modify different
locations on the same cache line.

» Example: Reduce operation where leaf results are all computed in
different elements of a global array.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 7/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Communication overhead (message passing)

@ The time to transmit the message through the network.

@ There is also a CPU overhead: the time set up the transmission
and the time to receive the message.

@ The context switches between the parallel application and the
operating system adds even more time.

@ Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process.

» Desired optimization for common “symmetric multiprocessor”
(SMP) hardware.

» There are implementations of Erlang, MPI, and other message
passing parallel programming frameworks tuned for SMPs.

» The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

» Allows the programmer to have one parallel programming model for
both threads on a multi-core processor and for multiple processes
on different machines in a cluster.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 8/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Synchronization Overhead

@ Parallel processes must coordinate their operations.

» Example: access to shared data structures.
» Example: writing to a file.
» Example: avoiding race conditions (MRR section 2.6.1).

@ For shared-memory programs (such as pthreads or Java
threads) there are explicit locks or other synchronization
mechanisms.

» Example: Mutexes / locks (MRR section 2.6.2) leading to strangled
scaling (MRR 2.6.4).

@ For message passing (such as Erlang or MPTI), synchronization

is accomplished by communication.

Synchronization is also a very common source of bugs in parallel

implementations.
@ Focus for today is on performance loss in correct implementations.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 9/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.
@ Algorithm: Sometimes the fastest parallel algorithm is

fundamentally different than the fastest sequential one, and the
parallel version performs more operations.

» Example: Bitonic sort (coming soon!).

@ Redundant computation: It is sometimes faster to recompute the
same thing on each processor than to compute it once and
broadcast.

» Example: Extracting subsequence of prime numbers by sieve of
Eratothenes.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 10/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Sieve of Eratosthenes

To find all primes < N:

Let MightBePrime = [2, 3, ..., N].
Let KnownPrimes = [].
while (MightBePrime # []) do

Loop invariant: KnownPrimes contains all primes less than the
smallest element of MightBePrime, and MightBePrime
is in ascending order. This ensure that the first element of
MightBePrime is prime.

Let P = firstelement of MightBePrime.

Append P to KnownPrimes.

Delete all multiples of P from MightBePrime.
end

o° o° o o

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018

11/22

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Prime-Sieve in Erlang

o)

% primes (N): return a list of all primes < N.

primes (N) when is_integer (N) and (N < 2) —-> [];
primes (N) when is_integer (N) ->

do_primes([], lists:seqg(2, N)).

invariants of do_primes(Known, Maybe):
All elements of Known are prime.
No element of Maybe is divisible by any element of Known.
lists:reverse (Known) ++ Maybe is an ascending list.
Known ++ Maybe contains all primes < N, where N is from p (N) .

o° o o° o° oP

do_primes (KnownPrimes, []) —-> lists:reverse (KnownPrimes);
do_primes (KnownPrimes, [P | Etc]) ->
do_primes ([P | KnownPrimes],

lists:filter (fun(E) -> (E rem P) /= 0 end, Etc)).

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 12/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

A More Efficient Sieve

@ If N is composite (not a prime), then it has at least one prime
factor that is at most v/N.

@ This means that once we've found a prime that is > /N, all
remaining elements of Maybe must be prime.

@ Revised code:

% primes (N):return a list of all primes < N.
primes (N) when is_integer (N) and (N < 2) -> [];
primes (N) when is_integer (N) ->
do_primes([], lists:seqg(2, N), trunc(math:sqgrt(N))).

do primes (KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->
do_primes ([P | KnownPrimes],

lists:filter (fun(E) —=> (E rem P) /=0end, Etc), RootN);
do_primes (KnownPrimes, Maybe, _RootN) -—>
lists:reverse (KnownPrimes, Maybe) .

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 13/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Prime-Sieve: Parallel Version

@ Main idea

» Find primes from 1...v/N.
» Divide VN + 1... N evenly between processors.
» Have each processor find primes in its interval.

@ We can speed up this program by having each processor compute
the primes from 1...v/N.
» Why does doing extra computation make the code faster?

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 14 /22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

@ Example: In the parallel sieve each process had its own copy of
the first v/N primes.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 15/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Overhead: Summary

Loss of performance due to extra work done by the parallel version not
needed by the sequential version, including:
@ Communication: Parallel processes may need to exchange data.

@ Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order.

» Sequential programs have their implicit sequential ordering.
@ Extra Computation:

» Sometimes the best parallel algorithm is different than the best
sequential algorithm.

» Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

@ Extra Memory: Data structures may be replicated in several
different processes.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 16/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Causes of Performance Loss: Limited Parallelism

Sometimes, we cannot keep all of the processors busy doing useful
work.
@ Non-parallelizable code:
» The dependency graph for operations is narrow and deep.
@ |dle processors:
» There is work to do, but it hasn’t been assigned to an idle processor.
@ Resource contention:
» Several processes need exclusive access to the same resource.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 17 /22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Non-parallelizable Code

Examples:
@ Finding the length of a linked list.
int length=0;
for(List p = listHead; p != null; p = p->next)
length++;

» Must dereference each p—>next before it can dereference the next

one.
» A different data structure (eg: skiplists, trees, etc.) might enable

more parallelism.

@ Searching a binary tree
» Requires 2 processes to get factor of k speed-up.
» Not practical in most cases.
» Again, could consider using another data structure.

@ Interpreting a sequential program.
@ Finite state machines.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 18/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Idle Processors

There is work to do, but processors are idle. Common causes:
@ Start-up and completion.
@ Work imbalance.
@ Communication delays.

Also commonly called “load imbalance” (MRR section 2.6.6).

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 19/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Resource Contention

Processors waiting for a limited resource.
@ It is easy to change a compute-bound task into an 1/0 bound task
using parallel programming.

@ Shared memory machines often run into memory bandwidth
limitations:

» Processing cache-misses.
» Communication between CPUs and co-processors.

@ Message passing machines often saturate the network bandwidth.

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 20/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Lecture Summary

Common causes of performance loss in parallel algorithms:

0 Parallel Overhead
@ Communication
@ Sychronization
@ Computation
@ Memory

© Limited Parallelism
@ Serial Dependency
@ |dle Processors
@ Resource Contention

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 21/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

Review Questions

@ What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.

@ Do programs running on a shared-memory computer have
communication overhead? Why or why not?

@ Do message passing program have synchronization overhead?
Why or why not?

@ Why might a parallel program have idle processes even when
there is work to be done?

@ Is deadlock a form of parallel performance loss?

Greenstreet & Mitchell Performance Loss CpSc 418 — Jan. 29, 2018 22/22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

	Parallel Overhead
	Communication
	Sychronization
	Computation
	Memory

	Limited Parallelism
	Serial Dependency
	Idle Processors
	Resource Contention

