
Causes of Performance Loss in Parallel Computing

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – January 29, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 1 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Table of Contents

1 Parallel Overhead
Communication
Sychronization
Computation
Memory

2 Limited Parallelism
Serial Dependency
Idle Processors
Resource Contention

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 2 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Objectives

At the end of this lecture, you should be able to:
Describe the main causes of performance loss when parallelizing
algorithms.
Explain how these losses arise in both message passing and
shared memory architectures.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 3 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Causes of Performance Loss: Overview

Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
In practice, this rarely happens because of:

I Overhead: Work that the parallel program has to do that is not
needed in the sequential program.

I Limited Parallelism: Not every processor can be kept (usefully)
busy all the time.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 4 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Causes of Performance Loss: Overhead

Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.

Communication:
I The processes (or threads) of a parallel program need to

communicate.
Synchronization:

I The processes (or threads) of a parallel program need to
coordinate.

I This can be to avoid interference, to ensure that a result is ready
before it is used, etc.

Computation:
I Recomputing a result is often cheaper than communicating it.

Memory Overhead:
I Each process may have its own copy of a data structure.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 5 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Communication Overhead

total

leaf leaf leaf

tallytally tallytally

root

mid mid

leaf:

create list of N/P elements
send ’ready’ to parent
wait for ’go’
count 3s in the list
send total to parent

mid:

wait for tallies

wait for readies:

wait for go:
send gos to children

send ready to parent

send total to parent

root:

send gos

wait for totals

wait for readies
start timer

compute grand total
end timer
report results

total

leaf

In a parallel program, data must be sent between processors.
The time to send and receive data is overhead.
Communication overhead occurs with both shared-memory and
message passing machines and programs.
Example: Reduce tree (e.g. Count 3s).
Example: MRR figure 2.13

I MRR appears to have a narrower definition of “overhead.”

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 6 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Communication overhead (shared-memory)

In a shared memory architecture:
I Each core has its own cache.
I The caches communicate to make sure that all references from

different cores to the same address look like there is one, common
memory.

I It takes longer to access data from a remote cache / memory than
from the local cache / memory.

False sharing can create communication overhead even when
there is no logical sharing of data.

I False sharing occurs if two processors repeatedly modify different
locations on the same cache line.

I Example: Reduce operation where leaf results are all computed in
different elements of a global array.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 7 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Communication overhead (message passing)

The time to transmit the message through the network.
There is also a CPU overhead: the time set up the transmission
and the time to receive the message.
The context switches between the parallel application and the
operating system adds even more time.
Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process.

I Desired optimization for common “symmetric multiprocessor”
(SMP) hardware.

I There are implementations of Erlang, MPI, and other message
passing parallel programming frameworks tuned for SMPs.

I The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

I Allows the programmer to have one parallel programming model for
both threads on a multi-core processor and for multiple processes
on different machines in a cluster.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 8 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Synchronization Overhead

Parallel processes must coordinate their operations.
I Example: access to shared data structures.
I Example: writing to a file.
I Example: avoiding race conditions (MRR section 2.6.1).

For shared-memory programs (such as pthreads or Java
threads) there are explicit locks or other synchronization
mechanisms.

I Example: Mutexes / locks (MRR section 2.6.2) leading to strangled
scaling (MRR 2.6.4).

For message passing (such as Erlang or MPI), synchronization
is accomplished by communication.

Synchronization is also a very common source of bugs in parallel
implementations.

Focus for today is on performance loss in correct implementations.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 9 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.

Algorithm: Sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel version performs more operations.

I Example: Bitonic sort (coming soon!).
Redundant computation: It is sometimes faster to recompute the
same thing on each processor than to compute it once and
broadcast.

I Example: Extracting subsequence of prime numbers by sieve of
Eratothenes.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 10 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Sieve of Eratosthenes

To find all primes ≤ N:

Let MightBePrime = [2, 3, ..., N].
Let KnownPrimes = [].
while(MightBePrime 6= []) do

% Loop invariant: KnownPrimes contains all primes less than the
% smallest element of MightBePrime, and MightBePrime
% is in ascending order. This ensure that the first element of
% MightBePrime is prime.
Let P = first element of MightBePrime.
Append P to KnownPrimes.
Delete all multiples of P from MightBePrime.

end

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 11 / 22

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Prime-Sieve in Erlang

% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->
do primes([], lists:seq(2, N)).

% invariants of do primes(Known, Maybe):
% All elements of Known are prime.
% No element of Maybe is divisible by any element of Known.
% lists:reverse(Known) ++ Maybe is an ascending list.
% Known ++ Maybe contains all primes ≤ N, where N is from p(N).
do primes(KnownPrimes, []) -> lists:reverse(KnownPrimes);
do primes(KnownPrimes, [P | Etc]) ->
do primes([P | KnownPrimes],

lists:filter(fun(E) -> (E rem P) /= 0 end, Etc)).

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 12 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


A More Efficient Sieve

If N is composite (not a prime), then it has at least one prime
factor that is at most

√
N.

This means that once we’ve found a prime that is ≥
√

N, all
remaining elements of Maybe must be prime.
Revised code:
% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->
do primes([], lists:seq(2, N), trunc(math:sqrt(N))).

do primes(KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->

do primes([P | KnownPrimes],
lists:filter(fun(E) -> (E rem P) /= 0 end, Etc), RootN);

do primes(KnownPrimes, Maybe, RootN) ->
lists:reverse(KnownPrimes, Maybe).

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 13 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Prime-Sieve: Parallel Version

Main idea
I Find primes from 1 . . .

√
N.

I Divide
√

N + 1 . . .N evenly between processors.
I Have each processor find primes in its interval.

We can speed up this program by having each processor compute
the primes from 1 . . .

√
N.

I Why does doing extra computation make the code faster?

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 14 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

Example: In the parallel sieve each process had its own copy of
the first

√
N primes.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 15 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Overhead: Summary

Loss of performance due to extra work done by the parallel version not
needed by the sequential version, including:

Communication: Parallel processes may need to exchange data.
Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order.

I Sequential programs have their implicit sequential ordering.
Extra Computation:

I Sometimes the best parallel algorithm is different than the best
sequential algorithm.

I Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

Extra Memory: Data structures may be replicated in several
different processes.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 16 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Causes of Performance Loss: Limited Parallelism

Sometimes, we cannot keep all of the processors busy doing useful
work.

Non-parallelizable code:
I The dependency graph for operations is narrow and deep.

Idle processors:
I There is work to do, but it hasn’t been assigned to an idle processor.

Resource contention:
I Several processes need exclusive access to the same resource.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 17 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Non-parallelizable Code
Examples:

Finding the length of a linked list.
int length=0;
for(List p = listHead; p != null; p = p->next)
length++;

I Must dereference each p->next before it can dereference the next
one.

I A different data structure (eg: skiplists, trees, etc.) might enable
more parallelism.

Searching a binary tree
I Requires 2k processes to get factor of k speed-up.
I Not practical in most cases.
I Again, could consider using another data structure.

Interpreting a sequential program.
Finite state machines.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 18 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Idle Processors

There is work to do, but processors are idle. Common causes:
Start-up and completion.
Work imbalance.
Communication delays.

Also commonly called “load imbalance” (MRR section 2.6.6).

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 19 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Resource Contention

Processors waiting for a limited resource.
It is easy to change a compute-bound task into an I/O bound task
using parallel programming.
Shared memory machines often run into memory bandwidth
limitations:

I Processing cache-misses.
I Communication between CPUs and co-processors.

Message passing machines often saturate the network bandwidth.

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 20 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Lecture Summary

Common causes of performance loss in parallel algorithms:

1 Parallel Overhead
Communication
Sychronization
Computation
Memory

2 Limited Parallelism
Serial Dependency
Idle Processors
Resource Contention

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 21 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018


Review Questions

What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.
Do programs running on a shared-memory computer have
communication overhead? Why or why not?
Do message passing program have synchronization overhead?
Why or why not?
Why might a parallel program have idle processes even when
there is work to be done?
Is deadlock a form of parallel performance loss?

Greenstreet & Mitchell Performance Loss CpSc 418 – Jan. 29, 2018 22 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_29
https://en.wikipedia.org/wiki/2018

	Parallel Overhead
	Communication
	Sychronization
	Computation
	Memory

	Limited Parallelism
	Serial Dependency
	Idle Processors
	Resource Contention


