Energy and Parallel Computing

Mark Greenstreet and Ian M. Mitchell

CpSc 418 - January 26, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet \& lan M. Mitchell and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Objectives

- Understand that parallel algorithms can use less energy than their sequential counterparts.
- Familiar with the technology scaling trends that lead to this.
- Where does Moore's Law come from?
- What is Dennard scaling (was it first proposed by Hoeneisen \& Mead?)
- What are energy-time trade-offs for real-world computers
- Aware of how this is likely to impact computing technology in the next decade or so.
- Buying computation by the kilowatt-hour
- What are the opportunities
* Domain specific architectures and languages.
- Where are exponential improvements in technology happening now
- What are energy-time trade-offs for real-world computers
- Aware of how this is likely to impact computing technology in the next decade or so.

Outline

- From silicon atoms to computers.
- Dam transistors
- How to make a computer
- Classical scaling, and why it no longer applies.
- Energy performance trade-offs in real computers.
- Going fast takes lots of energy.
- Many slow parallel tasks can be more energy efficient than one, fast sequential task.
- The case for dedicated co-processors.
- Guessing about the future
- Optical technology has a bright future.
- Dedicated co-processors means domain-specific architectures and programming models.

Dam Electronics

Silicon Atoms

- Silicon is atomic number 14: 14 protons \bullet. The most common isotope has 14 neutrons \bullet •
- The outermost electron shell (the valence band) has four electrons, and a capacity of eight.
- This is like carbon (atomic number 6)
- Just like carbon, silicon forms covalently bonded crystals, but silicon crystals are better than carbon crystals.
- You can make transistors out of carbon crystals, but they aren't as fast or reliable as the ones we make out of silicon.
- So, we discard the carbon crystals and sell them under the brand name "diamond".

Silicon Crystals

- Silicon crystals are tetrahedral
- but I can't draw in 3D;
- so, we'll pretend that they make a 2D, square mesh.
- This preserves the property that each silicon atom bonds with four neighbours.
- And we don't need more details for this quick intro.
- Each valence electron pairs with a valence electron of a neighbouring silicon atom.
- All of the silicon atoms have their outermost shells completed.
- The crystal structure is very stable.
- The electrons have little incentive to move.
- Pure silicon is a poor conductor.

Doping

Good for semiconductors, bad for athletes.

conduction band valence band

pure $\mathbf{S i}$

p-doped

- n-doping: add a low concentration of atoms with 5 electrons in their valence shell (e.g. phosphorus or arsenic).
- The extra electron is in the "conduction band" and can wander around the crystal.
- We now have an electrical conductor.
- p-doping: add a low concentration of atoms with 3 electrons in their valence shell (e.g. boron).
- The "missing electron" in the "valence band" and can wander around the crystal.
- The missing electrons are called holes.
- We have an electrical conductor.
- p-doped silicon is a barrier to electron conduction
- Electrons are attracted to positive charges and repelled by negative ones.

Doping

Good for semiconductors, bad for athletes.

- n-doping: add a low concentration of atoms with 5 electrons in their valence shell (e.g. phosphorus or arsenic).
- p-doping: add a low concentration of atoms with 3 electrons in their valence shell (e.g. boron).
- p-doped silicon is a barrier to electron conduction
- Likewise, n-doped silicon is a barrier to holes.
- We have a dam.
- Electrons are attracted to positive charges and repelled by negative ones.
- vice-versa for holes
- We have a way to raise and lower the dam.

Transistors (i.e. MOSFETs)

- The MOSFET starts with a $\mathrm{N} \rightarrow \mathrm{P}$ junction followed by a $\mathrm{P} \rightarrow \mathrm{N}$ junction.

Transistors (i.e. MOSFETs)

- The MOSFET starts with a $N \rightarrow P$ junction followed by a $P \rightarrow N$ junction.
- Add a "gate" electrode over the middle p-doped region.
- The gate is separated from the rest of the tranistor by a thin insulator (glass).

Transistors (i.e. MOSFETs)

- The MOSFET starts with a $N \rightarrow P$ junction followed by a $P \rightarrow N$ junction.
- Add a "gate" electrode over the middle p-doped region.
- If a positive voltage is applied to the gate:
- Electrons that entered the p-doped region from the source are attracted towards the gate.
- The holes in the channel are driven repelled down.
- This allows the electrons to from a conducting bridge from the source to the drain.
- Current can flow between the source and drain.

Transistors (i.e. MOSFETs)

- The MOSFET starts with a $N \rightarrow P$ junction followed by a $P \rightarrow N$ junction.
- Add a "gate" electrode over the middle p-doped region.
- If a positive voltage is applied to the gate:
- If a negative voltage is applied to the gate,
- There is no connection between the source and drain, and no current flows.
- The MOSFET is a voltage-controlled switch.

Transistors (i.e. MOSFETs)

- The MOSFET starts with a $N \rightarrow P$ junction followed by a $P \rightarrow N$ junction.
- The MOSFET is a voltage-controlled switch.
- Now that we have a switch, we can build gates.
- With gates, we can build computers.
- \square

Gates

Semiconductor Summary

Computer image from
http://seniorsnoworlando.org/wp-content/uploads/2014/05/IMG_0009-1038x576.jpg

Moore's Law

- Moore's Law (original): the number of transistors on a chip will double every year from 1965 through 1975.
- Justification
- Moore took four data points and found they could be fit reasonable well with a line on a semi-log plot. :)
- More seriously, Moore observed that
\star Putting more transistors onto a chip allowed you do build new kinds of electronic devices.
\star There would be a large market for these devices.
* The profits made from selling the chips would allow semiconductor companies to improve their manufacturing processes.
« Transistors would shrink a lot, chips would get bigger.
* Moore extrapolated until 1975 because the various technical challenges seemed solvable given plausible estimates of sales an profit.

Moore’s Law - Beyond 1975

- Moore's law has enjoyed many extensions as key manufacturing issues were solved.
- The rate has gradually slowed from doubling every year to doubling every 3 or 4 years.
- Power blocked clock frequency from scaling with transistor size from roughly 2003 and beyond.
- There is a limit to scaling
- Current products in transistors with 14 nm channel length (the thickness of the "dam"). $\mathrm{nm}=$ nanometer $=10^{-9}$ meter.
- Chip designer working on designs with 7 nm channel length.
- Shrinking to 5 nm or 3.5 nm looks really difficult.
- The spacing of silicon atoms in a silicon crystal is around 0.3 nm .

Denard Scaling

What happens if we scale transistor dimensions and operating voltage by a factor λ ?

- E.g. $\lambda=0.5$ is shrinking everything to half its previous size.
- Gate delay scales as λ.
- Clock frequency scales as $1 / \lambda$.
- Energy per signal transition scales as λ^{3} - this is amazing!
- Power is $\frac{\text { energy }}{/}$ time. Power scales as λ^{2}.
- Number of devices on a chip scales as λ^{-2}.
- Power density (i.e. watts per square centimeter) is constant.
- Conclusion: everything gets way better as we shrink transistors.
- Of course, this requires very precise manufacturing, so it took many rounds of the Moore's Law positive feedback cycle to get to where we are today.

What went wrong: The Power Wall

- To disconnect the source from the drain of the transistor, the "dam" must be above the level of the upper reservoir.
- But, the reservoirs have "waves"
- The waves are the thermal energy of the electrons.
- To turn off a transistor, the dam needs to be about $10 \times$ higher than the average wave.
- The dam height can be at most $\sim 40 \%$ of the operating voltage.
- This sets a lower bound for operating voltage (at room temperature) of about 0.6 V .
- Voltage hasn't scaled as predicted by classical scaling since the early 1990's.
- Chips are faster than they should be by Denard scaling. $)$
- They are also way hotter. \because

Power is the Primary Design Concern

- In the old days, processors were designed primarily for speed.
- Now, they are designed to satisfy a power requirement.
- This impacts all forms of computing:
- mobile devices and battery life
- desktop devices and gaming consoles are limited by cooling
- data centers and cloud services are limited by building cooling.
\star The power bill is a major part of the operating expenses for cloud services.
\star Indirectly, cloud users are buying computation by the kilowatt hour.
\star Although the power bill is indirect in the billing, the financial consequences are very real.

Energy time trade-offs in real life

- The tradeoff that $E \propto T^{-2}$ from the text assumes classical scaling.
- We can't push the operating voltage as low as assumed by such scaling laws.
- Emperically, we get $E \propto T^{-1}$ through a combination of voltage scaling, circuit design, and architectural tradeoffs.
- Parallel computing can still be a big-win for saving energy
- Let's say we can build processors that run $\frac{1}{10}$ the speed of a fast sequential machine. They will each use $\frac{1}{100}$ of the power.
- If a parallel version of the computation gets perfect speed-up, we can run it on 10 slow processors in the same time as running the sequential code on one fast processor.
- The parallel version will use $\frac{1}{10}$ of the energy.

Where does the energy go

- For a general purpose processor: instruction fetch, decode, and other control.
- For a GPU: register file accesses.
- Compared with full-custom hardware:
- A CPU can be $1000 \times$ less energy efficient.
- A GPU can be $100 \times$ less energy efficient - that's better than a CPU, but there is still plenty of room for improvement.
- The factor of $100 \times$ energy waste of current architectures is begging for the next breakthrough.
- What will that breakthrough be?

What went wrong: The Atom Wall

- Chips are now being designed where the gate length (i.e. dam thickness) is about 20 atoms.
- We need to squeeze a low concentration of dopant atoms into the channel.
- It's very hard to manufacture circuits where a few atoms makes a big difference.
- All edges are jagged.
- Photo-lithography (printing the circuit structures with light) is challenging because the transistors are much smaller than a wavelength of the UV light that is used.
- Quantum mechanics becomes a big deal.

What's next? (part 1)

- Parallel computing: how to make good use of Moore transistors without using more power.
- Optics:
- Computer performance is often limited by chip-to-chip interconnect, e.g. the connection between a CPU an memory.
- Glass is much better than copper.
- Optical networking is standard in large data centers.
- Optical interconnect between chips is emerging - there are clever ways to make modulate and detect light beams with silicon.
- Wavelength-division multiplexing (WDM) is awesome - we can have hundreds of simultaneous channels on a single glass fibre by using different wavelengths of light.

What's next? (part 2)

- Higher bandwidth channels to memory
- GPUs now use HBM and HBM2.
\star This involves stacking 16 or 18 memory chips next to the GPU.
\star The memory chips are connected to each other by polishing each chip down to a few tenths of a millimeter thick, etching holes in the chip, filling the holes with metal, and making connections.
\star This allows $10 \times$ the number of connections between the memory chips and between the memory and the GPU.
- Cryogenic memory?
* l've read recently about a joint project between Microsoft and Rambus to look at memory that runs in liquid nitrogen.
\star Silicon in liquid nitrogen has wonderful electrical properties - the waves are much smaller.
\star But, making reliable systems has been a show-stopper because wires become extremely brittle.
夫 I haven't seen how Microsoft and Rambus plan to address this.
- Nanotubes, graphene, spintronics, molecular computing, quantum computing
\star Many long-shots are being explored.

