
Parallel Performance, Speedup and Efficiency

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – January 24, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Table of Contents

1 Measuring Performance
Latency vs. Throughput
Speedup and Efficiency

2 Amdahl, Gustafson, and Work/Span

3 More Observations about Performance
Modest Returns
Super-Linear Speedup
Embarrassingly Parallel Problems

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 2 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Objectives

Compare and contrast common measures of performance:
I Latency vs. throughput
I Wall-clock time vs. operation count

Evaluate quantitative measures of parallel performance:
I Speedup.
I Efficiency.

Explain common observations about parallel performance
I Amdahl’s and Gustafson’s laws: Limitations on parallel

performance (and how to evade them).
I The law of modest returns: High complexity problems are bad, and

worse on a parallel machine.
I Superlinear speed-up: More CPUs means more fast memory, and

sometimes you win.
I Embarrassingly parallel problems: Sometimes you win without even

trying.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 3 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Outline

1 Measuring Performance
Latency vs. Throughput
Speedup and Efficiency

2 Amdahl, Gustafson, and Work/Span

3 More Observations about Performance
Modest Returns
Super-Linear Speedup
Embarrassingly Parallel Problems

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 4 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Measuring Performance

The main motivation for parallel programming is performance.
I Time: make a program run faster.
I Space: allow a program to run with more memory.

Two common measures of speed:
I Latency: time from starting a task until it completes.
I Throughput: the rate at which tasks are completed.
I Key observation:

throughput =
1

latency
, sequential programming

throughput ≥ 1
latency

, parallel programming

I High throughput is achieved through pipelining and/or latency
hiding (which often increase latency).

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Speed Up
Simple definition:

speedup =
time(sequential execution)

time(parallel execution)

We can also describe speedup as how many percent faster:

%faster = (speedup − 1) ∗ 100%

Efficiency is a related measure of what fraction of the P
processors are kept busy:

%efficiency =
speedup

P
=

time(sequential execution)
time(parallel execution)P

I We will focus on speed-up because speed is currently the most
common reason for parallelization.

I Efficiency becomes more important when looking at resources
other than time, such as energy (next lecture!) or capital cost.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Simple Equation, So Many Interpretations

Simply reporting a speedup number tells us almost nothing.

Is “time” latency or (inverse of) throughput?
How big is the problem? Is the same size used for sequential and
parallel version?
What is the sequential version:

I The parallel code run on one processor?
I The fastest possible sequential implementation?
I Something else?

How are we measuring “time”?

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Speedup – Example

Let’s say that count 3s of a million items takes 10ms on a single
processor.
If I run count 3s with four processes on a four CPU machine,
and it takes 3.2ms, what is the speedup?
If I run count 3s with 16 processes on a four CPU machine,
and it takes 1.8ms, what is the speedup?
If I run count 3s with 128 processes on a 32 CPU machine,
and it takes 0.28ms, what is the speedup?

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 8 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Outline

1 Measuring Performance
Latency vs. Throughput
Speedup and Efficiency

2 Amdahl, Gustafson, and Work/Span

3 More Observations about Performance
Modest Returns
Super-Linear Speedup
Embarrassingly Parallel Problems

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Work and Span
Describe computation as a graph.

I Vertices correspond to operations.
F Which operations should we count?
F For example, with count 3s, we count the X==3 test and the adds for

the tallies.
F For parallel count 3s, we also count the send and receive operations.
F Should we count the details of the recursive calls of the

count3s(List) function?
F Equivalently, should we count the operations for setting up and

maintaining a loop in an imperative language?
I Edges represent dependencies

F An edge from V1 to V2 if V2 needs the result from V1 to perform its
operation.

Work: is the total number of vertices. Work corresponds to the
sequential execution time.
Span: is the depth of the tree.

I Span corresponds to the minimum parallel time.
I Span ignores communication cost – but we could add that by

“coloring” vertices.
I Span still gives us an idea of how parallelizable an algorithm is.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Amdahl’s Law

Given a sequential program where
I fraction s of the execution time is inherently sequential.
I fraction 1− s of the execution time benefits perfectly from speedup.

The run-time on P processors is:

Tparallel = Tsequential ∗ (s + 1− s
P )

Consequences:
I Define

speedup =
Tsequential
Tparallel

I speedup on P processors is at most 1
s .

Gene Amdahl argued in 1967 that this limit means that parallel
computers are only useful for a few special applications where s is
very small.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 11 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Amdahl’s Law

P
0 20 40 60 80 100

sp
ee
d-
up

0

2

4

6

8

10

12

14

16

18
Amdahl's Law: s = 0.05

See also MRR Figure 2.5 (and Figure 2.6 for equivalent efficiency
plots).

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Amdahl’s Law, 50 years later

Amdahl’s “law” is a mathematical theorem, not a physical law.

Amdahl’s is also an economic observation.
Amdahl’s law was formulated when CPUs were expensive.
Today, CPUs are cheap!

I The cost of fabricating eight cores on a die is very little more that
the cost of fabricating one.

I MRR argues that per-core performance grows as√
#transistors.
F Adding cores can be a better use of transistors than trying to improve

single processor performance.

Computer cost is dominated by the rest of the system: memory,
disk, network, monitor, . . .

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Gustafson’s Law

Amdahl’s law assumes a fixed problem size.
Gustafson observed in 1988 that when more powerful computers
are available, the users solve bigger problems.

I Many computations have s (sequential fraction) that decreases as
N (problem size) increases.

Examples:
I Scientific computing.
I Animation, games and multi-media.
I Data science and data mining of massive data sets.

Having lots of cheap CPUs available will
I Change our ideas of what computations are easy and what are

hard.
I Determine what the next generation of “killer-apps” will be.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Gustafson’s Law

P
0 200 400 600 800 1000

sp
ee
d-
up

0

100

200

300

400

500

600

700

800

900

1000
Amdahl's Law: s = 0.05

N=10
N=100
N=1000
N=10000

Example: Speedup of a problem where parallel work grows as
N3/2 and sequential work as log P.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Outline

1 Measuring Performance
Latency vs. Throughput
Speedup and Efficiency

2 Amdahl, Gustafson, and Work/Span

3 More Observations about Performance
Modest Returns
Super-Linear Speedup
Embarrassingly Parallel Problems

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


The Law of Modest Returns

More bad news. /
Let’s say we have an algorithm with a sequential run-time
T = (12ns)N4.

I If we’re willing to wait for one hour for it to run, what’s the largest
value of N we can use?

I If we have 10000 machines, and perfect speedup (i.e.
speedup = 10000), now what is the largest value of N we can use?

I What if the run-time is (5ns)1.2N?

Parallelism offers modest returns unless the problem is of fairly
low complexity.
But:

I Sometimes, modest returns are good enough: weather forecasting,
climate models.

I Sometimes, problems have huge N and low complexity: data
mining, graphics, machine learning.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 17 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Super-Linear Speedup

Sometimes, speedup > P. ,
But if that is true, wouldn’t the best sequential algorithm be to
simulate P workers by time-sharing a single processor?

I Probably not: Time-sharing has overhead.
Memory: a common explanation

I P machines have more main memory (DRAM)
I and more cache memory and registers (total)
I and more I/O bandwidth, . . .

Multi-threading: another common explanation
I The sequential algorithm cannot full utilize each CPU’s parallel

capabilities.
I A parallel algorithm can make better use through, for example,

latency hiding.

Algorithmic advantages: Some problems are naturally parallel.
BUT: be skeptical, especially if speedup � P.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very
little communication or coordination.

Rendering images for computer-animation: each frame is
independent of all the others.
Brute-force searches for cryptography.
Analyzing large collections of images: astronomy surveys, facial
recognition, . . .
Monte-Carlo simulations: same model, run with different random
values.
Don’t be ashamed if your code is embarrassingly parallel:

I Embarrassingly parallel problems are great: you can get excellent
performance without heroic efforts.

I The only thing to be embarrassed about is if you don’t take
advantage of easy parallelism when it is available.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 19 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Summary
Speed-up is sequential time divided by parallel time.

I Simple definition, can be messy in practice.
I How do we measure “time” – latency, throughput, throughput under deadline,

some other measure?
I What is the sequential time? Best algorithm? What if the program cannot run

on one machine?
Modeling performance

I Amdahl’s law: what if some fixed fraction of the computation is
non-parallelizable?

I Gustafson’s law: what if the overhead grows slower that the amount of parallel
work as the problem size grows?

I Work-Span: a graph model that unifies these models.
Other issues:

I Super-linear speed-up: usually because more machines have more memory.
I Embarrassingly parallel problems:

F Sometimes task are (very nearly) independent.
F This is great – don’t be ashamed of an embarrassingly parallel problem.

I The law of modest returns
F Parallel computing is not a panacea for high computational complexity problems.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 20 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Preview

January 26: Energy, Power, and Time
January 29: Performance Loss

Reading: McCool et al., Chapter 2, Section 2.6.
Homework: HW 2 earlybird (11:59pm), HW 3 goes out.

January 31: Parallel Performance: Models
Homework: HW 2 due (11:59pm).

February 2-9: Sorting
February 13: Tuesday – Mark’s office hours

Homework: HW 3 earlybird (11:59pm).
HW 4 goes out – midterm review, maybe some simple CUDA

February 14: Intro. to GPUs & CUDA
Homework: HW 3 due (11:59pm).

February 16: A CUDA example
February 19-23: break week
February 28: midterm

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 21 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018


Review Questions

What is speedup? Give an intuitive, English answer and a
mathematical formula.
Why can it be difficult to determine the sequential time for a
program when measuring speedup?
What is Amdahl’s law? Give a mathematical formula. Why is
Amdahl’s law a concern when developing parallel applications?
Why in many cases is it not a show-stopper?
Is parallelism an effective solution to problems with high big-O
complexity? Why or why not?
What is super-linear speedup? Describe two causes.
What is an embarrassingly parallel problem? Give an example.

Greenstreet & Mitchell Speedup CpSc 418 – Jan. 24, 2018 22 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

	Measuring Performance
	Latency vs. Throughput
	Speedup and Efficiency

	Amdahl, Gustafson, and Work/Span
	More Observations about Performance
	Modest Returns
	Super-Linear Speedup
	Embarrassingly Parallel Problems


