Parallel Performance, Speedup and Efficiency

Mark Greenstreet and lan M. Mitchell

CpSc 418 — January 24, 2018

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & lan M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 1/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Table of Contents

0 Measuring Performance
@ Latency vs. Throughput
@ Speedup and Efficiency

© Amdahl, Gustafson, and Work/Span

e More Observations about Performance
@ Modest Returns
@ Super-Linear Speedup
@ Embarrassingly Parallel Problems

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 2/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Objectives

@ Compare and contrast common measures of performance:

» Latency vs. throughput
» Wall-clock time vs. operation count
@ Evaluate quantitative measures of parallel performance:
» Speedup.
» Efficiency.
@ Explain common observations about parallel performance
» Amdahl’s and Gustafson’s laws: Limitations on parallel
performance (and how to evade them).
» The law of modest returns: High complexity problems are bad, and
worse on a parallel machine.
» Superlinear speed-up: More CPUs means more fast memory, and
sometimes you win.
» Embarrassingly parallel problems: Sometimes you win without even
trying.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 3/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Outline

0 Measuring Performance
@ Latency vs. Throughput
@ Speedup and Efficiency

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 4/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Measuring Performance

@ The main motivation for parallel programming is performance.
» Time: make a program run faster.
» Space: allow a program to run with more memory.

@ Two common measures of speed:
» Latency: time from starting a task until it completes.

» Throughput: the rate at which tasks are completed.
» Key observation:

1
latency

throughput = , sequential programming

throughput

arallel programmin
latency’ P Prog g

» High throughput is achieved through pipelining and/or latency
hiding (which often increase latency).

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 5/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Speed Up
@ Simple definition:

time(sequential __execution)
time(parallel_execution)

speedup =

@ We can also describe speedup as how many percent faster:
%faster = (speedup —1)«100%

@ Efficiency is a related measure of what fraction of the P
processors are kept busy:

speedup time(sequential_execution)

%efficiency = =
L y P time(parallel_execution) P

» We will focus on speed-up because speed is currently the most
common reason for parallelization.

» Efficiency becomes more important when looking at resources
other than time, such as energy (next lecture!) or capital cost.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 6/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Simple Equation, So Many Interpretations

Simply reporting a speedup number tells us almost nothing.

@ Is “time” latency or (inverse of) throughput?

@ How big is the problem? |Is the same size used for sequential and
parallel version?

@ What is the sequential version:

» The parallel code run on one processor?
» The fastest possible sequential implementation?
» Something else?

@ How are we measuring ‘“time”?

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 7/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Speedup — Example

@ Let’s say that count 3s of a million items takes 10ms on a single
processor.

@ If I run count 3s with four processes on a four CPU machine,
and it takes 3.2ms, what is the speedup?

@ If I run count 3s with 16 processes on a four CPU machine,
and it takes 1.8ms, what is the speedup?

@ If I run count 3s with 128 processes on a 32 CPU machine,
and it takes 0.28ms, what is the speedup?

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 8/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Outline

@ Amdahl, Gustafson, and Work/Span

Greenstreet & Mitchell Speedup

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Work and Span

@ Describe computation as a graph.
» Vertices correspond to operations.
* Which operations should we count?
* For example, with count 3s, we count the x==3 test and the adds for
the tallies.
* For parallel count 3s, we also count the send and receive operations.
* Should we count the details of the recursive calls of the
count3s (List) function?
* Equivalently, should we count the operations for setting up and
maintaining a loop in an imperative language?
» Edges represent dependencies
* An edge from V; to Vs if V> needs the result from V; to perform its
operation.
@ Work: is the total number of vertices. Work corresponds to the
sequential execution time.
@ Span: is the depth of the tree.
» Span corresponds to the minimum parallel time.
» Span ignores communication cost — but we could add that by
“coloring” vertices.
» Span still gives us an idea of how parallelizable an algorithm is.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 10/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Amdahl’s Law

@ Given a sequential program where

» fraction s of the execution time is inherently sequential.
» fraction 1 — s of the execution time benefits perfectly from speedup.

@ The run-time on P processors is:

1—s

Toaralel = Tsequential * (S + T)
@ Conseguences:
» Define
speedup = Tsequentiat
Tparallel

» speedup on P processors is at most ‘g

@ Gene Amdahl argued in 1967 that this limit means that parallel
computers are only useful for a few special applications where s is
very small.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 11/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Amdahl’s Law

18 Amdahl's Law: s = 0.05

16

14

12

@ See also MRR Figure 2.5 (and Figure 2.6 for equivalent efficiency
plots).

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Amdahl’s Law, 50 years later
Amdahl’s “law” is a mathematical theorem, not a physical law.

Amdahl’s is also an economic observation.

@ Amdahl’s law was formulated when CPUs were expensive.
@ Today, CPUs are cheap!

» The cost of fabricating eight cores on a die is very little more that
the cost of fabricating one.
» MRR argues that per-core performance grows as

V#transistors.
* Adding cores can be a better use of transistors than trying to improve
single processor performance.
@ Computer cost is dominated by the rest of the system: memory,
disk, network, monitor, ...

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 13/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Gustafson’s Law

Amdahl’s law assumes a fixed problem size.

@ Gustafson observed in 1988 that when more powerful computers
are available, the users solve bigger problems.
» Many computations have s (sequential fraction) that decreases as
N (problem size) increases.
@ Examples:
» Scientific computing.
» Animation, games and multi-media.
» Data science and data mining of massive data sets.
@ Having lots of cheap CPUs available will

» Change our ideas of what computations are easy and what are
hard.
» Determine what the next generation of “killer-apps” will be.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 14/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Gustafson’s Law

1000 ——N=10

——N=100
900 - N=1000
——N=10000

800

700 -

600 -

500 -

speed-up

400 -

300 -

200 -

100

0

0 200 400 600 800 1000
P

@ Example: Speedup of a problem where parallel work grows as
N3/2 and sequential work as log P.

Greenstreet & Mitchell Speedup CpSc 418 —Jan. 24, 2018 15/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Outline

e More Observations about Performance
@ Modest Returns
@ Super-Linear Speedup
@ Embarrassingly Parallel Problems

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 16/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

The Law of Modest Returns

More bad news. ©
@ Let’s say we have an algorithm with a sequential run-time
T = (12ns)N*.
» If we're willing to wait for one hour for it to run, what’s the largest
value of N we can use?
» If we have 10000 machines, and perfect speedup (i.e.
speedup = 10000), now what is the largest value of N we can use?
» What if the run-time is (5ns)1.2N?
@ Parallelism offers modest returns unless the problem is of fairly
low complexity.
@ But:

» Sometimes, modest returns are good enough: weather forecasting,

climate models.
» Sometimes, problems have huge N and low complexity: data
mining, graphics, machine learning.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 17/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Super-Linear Speedup

Sometimes, speedup > P. ®
@ But if that is true, wouldn’t the best sequential algorithm be to
simulate P workers by time-sharing a single processor?

» Probably not: Time-sharing has overhead.

@ Memory: a common explanation
» P machines have more main memory (DRAM)
» and more cache memory and registers (total)
» and more I/O bandwidth, ...

@ Multi-threading: another common explanation

» The sequential algorithm cannot full utilize each CPU’s parallel
capabilities.

» A parallel algorithm can make better use through, for example,
latency hiding.

@ Algorithmic advantages: Some problems are naturally parallel.
BUT: be skeptical, especially if speedup > P.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 18/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very
little communication or coordination.

@ Rendering images for computer-animation: each frame is
independent of all the others.

@ Brute-force searches for cryptography.

@ Analyzing large collections of images: astronomy surveys, facial
recognition, . ..

@ Monte-Carlo simulations: same model, run with different random
values.

@ Don’t be ashamed if your code is embarrassingly parallel:

» Embarrassingly parallel problems are great: you can get excellent
performance without heroic efforts.

» The only thing to be embarrassed about is if you don’t take
advantage of easy parallelism when it is available.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 19/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Summary

@ Speed-up is sequential time divided by parallel time.
» Simple definition, can be messy in practice.
» How do we measure “time” — latency, throughput, throughput under deadline,
some other measure?
» What is the sequential time? Best algorithm? What if the program cannot run

on one machine?
@ Modeling performance
» Amdahl’s law: what if some fixed fraction of the computation is

non-parallelizable?
» Gustafson’s law: what if the overhead grows slower that the amount of parallel

work as the problem size grows?
» Work-Span: a graph model that unifies these models.
@ Other issues:
» Super-linear speed-up: usually because more machines have more memory.
» Embarrassingly parallel problems:
* Sometimes task are (very nearly) independent.
* This is great — don’t be ashamed of an embarrassingly parallel problem.
» The law of modest returns
* Parallel computing is not a panacea for high computational complexity problems.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 20/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Preview

January 26: Energy, Power, and Time
January 29: Performance Loss
Reading: McCool et al., Chapter 2, Section 2.6.
Homework: HW 2 earlybird (11:59pm), HW 3 goes out.
January 31: Parallel Performance: Models
Homework: HW 2 due (11:59pm).
February 2-9: Sorting
February 13: Tuesday — Mark’s office hours
Homework: HW 3 earlybird (11:59pm).
HW 4 goes out — midterm review, maybe some simple CUDA
February 14: Intro. to GPUs & CUDA
Homework: HW 3 due (11:59pm).
February 16: A CUDA example
February 19-23: break week
February 28: midterm

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 21/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

Review Questions

@ What is speedup? Give an intuitive, English answer and a
mathematical formula.

@ Why can it be difficult to determine the sequential time for a
program when measuring speedup?

@ What is Amdahl’s law? Give a mathematical formula. Why is
Amdahl’s law a concern when developing parallel applications?
Why in many cases is it not a show-stopper?

@ Is parallelism an effective solution to problems with high big-O
complexity? Why or why not?

@ What is super-linear speedup? Describe two causes.

@ What is an embarrassingly parallel problem? Give an example.

Greenstreet & Mitchell Speedup CpSc 418 — Jan. 24, 2018 22/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/October_24
https://en.wikipedia.org/wiki/2018

	Measuring Performance
	Latency vs. Throughput
	Speedup and Efficiency

	Amdahl, Gustafson, and Work/Span
	More Observations about Performance
	Modest Returns
	Super-Linear Speedup
	Embarrassingly Parallel Problems

