
Shared Memory Multiprocessors

Mark Greenstreet

CpSc 418 – January 19, 2018

Outline:
Shared-Memory Architectures
Memory Consistency
Coding Break
Weak Consistency

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 1 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Objectives

Understand how processors can communicate by sharing
memory.
Able to explain the term “sequential consistency”

I Describe a simple cache-coherence protocol, MESI
I Describe how the protocol can be implemented by snooping.
I Describe ”sequential consistency”.
I Be aware that real machines make guarantees that are weaker

than sequential consistency.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 2 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


An Ancient Shared-Memory Machine

SWITCH

MEM1

CPU1CPU0

MEM0 MEM2 MEM3

Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does its operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than memory,
this isn’t practical.
Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 3 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


A Shared-Memory Machine with Caches

CPU

MEM

cache 0

CPU 0

cache 1

CPU 1 ...

...

n−1

cache

n−1

Caches reduce the number of main memory reads and writes.
But, what happens when a processor does a write?
Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 4 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Cache Inconsistency
CPU

cache 0

CPU 0

cache 1

CPU 1

MEM

...

...

n−1

cache

n−1

Assume caches are write-back:
I write-back: writes only update the cache.

Main memory updated when the cache block is evicted.
I write-through: writes update cache and main memory.
I Modern processors have to use write-back for performance:

Main memory is way too slow for write-through.

Step 0: CPU 0 and CPU 1 have both read memory location
addr0 and addr1 and have copies in their cache.
Step 1: CPU 0 writes to addr0 and CPU 1 writes to addr1.
Step 2: CPU 0 reads from addr1 and CPU 1 reads from from
addr0.

I Both CPUs see the old value.
I The writes only updated the writer’s cache.
I The readers got the old values.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 5 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Cache Coherence Protocols

Big idea: caches communicate with each other so that:
I Multiple CPUs can have read-only copies for the same memory

location.
I If a cache has a dirty block, then no other cache has a copy of that

block.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 6 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


The MESI protocol

remote

write*

local read

remote
write*, ε

write*,

local
write

remote
read

remote read
update

memory

S

ε

ε

Mlocal

local write* E

I

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

remote write*,
update memory

(carefully)

Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches are notified and invalidate their copies.
I This ensures that writeable blocks are exclusive.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 7 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


How caches work
Caching rhymes with hashing and the two ideas are similar.

I Caches store data in “blocks” – the block size is a small
power-of-two times the machine word size.

I A cache has one or more “ways” – each way holds a power-of-two
number number of blocks.

I A hash-value is computed from the address.
F blockAddr = addr / blockSize; % right shift
F blockIndex = blockAddr % (BlocksPerWay-1); % bit

masking

Read:
I The blockIndex is used to look up one entry in each “way”.
I Each block has a tag that includes the full-address for the data

stored in that block.
I The tags from each way are compared with the tag of the address:

F If any tag matches, that way provides the data.
F If no tags match, then a cache miss occurs.
F Some current block is evicted from the cache to make room for the

incoming block.

Writes are similar to reads.
Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 8 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


A typical cache

way3

=
47:12

tag

data

hit

way0 way1 way2

= = =

tagaddr[0:47]

position
within

cache−block
(ignored)

3:0

cache
index

tag datadata tag datatag data
11:4

Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 9 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Implementing MESI: Snooping

CPUsengine

MESI

CPU

tags
snoop

local
tags

data

miss

match

shared bus

...
Memory
and other

Caches read and write main memory over a shared memory bus.
Each cache has two copies of the tags: one for the CPU, the other
for the bus.
If the cache sees another CPU reading or writing a block that is in
this cache, it takes the action specified by the MESI protocol.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 10 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Implementing MESI: Directories

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.

Comparison:
I Snooping is simple for machines with a small number of processors.
I Directory methods scale better to large numbers of processors.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 11 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Sequential Consistency

Memory is said to be sequentially consistent if
All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:

I The operations for each processor occur in the global ordering in
the same order as they did on the processor.

I Every read gets the value of the preceding write to the same
address.

Sequential consistency corresponds to what programmers think
“ought” to happen.

I Very similar to “serialiazability” for database transactions.

MESI guarantees sequential consistency

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 12 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Weak Consistency

interface

CPU

mem

read

queue

cache

mem

write

queue

memory

CPUs typically have “write-buffers” because memory
writes often come in bursts.
Typically, reads can move ahead of writes to maximize
program performance.
Why?

I Because there may be instructions waiting for the data
from a load.

I A transition from “shared” to “modified” requires
notifying all processors – this can take a long time.

I Memory writes don’t happen until the instruction
commits.

This means that real computers don’t guarantee
sequential consistency.

I Warning: classical algorithms for locks and shared
buffers fail when run on a real machines!

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 13 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Programming Shared Memory Machines
Shared memory make parallel programming “easier” because:

I One thread can pass an entire data structure to another thread just
by giving a pointer.

I No need to pack-up trees, graphs, or other data structures as
messages and unpack them at the receiving end.

Shared memory make parallel programming harder because:
I It’s easy to overlook synchronization (control to shared data

structures). Then, we get data races, corrupted data structures,
and other hard-to-track-down bugs.

I A defensive reaction is to wrap every shared reference with a lock.
But locks are slow (that λ factor for communication), and this often
results is slow code, or even deadlock.

In practice, shared memory code that works often has a
message-passing structure.
Finally, beware of weak consistency

I Use a thread library.
I There are elegant algorithms that avoid locking overhead, even with

weak consistency, but they are beyond the scope of this class.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 14 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Shared Memory and Performance

Shared memory can offer better performance than message
passing because

I High bandwidth: the buses that connect the caches can be very
wide, especially if the caches are on a single chip.

I Low latency: the hardware handles moving the data – no operating
system calls and context-switch overheads.

But, shared memory doesn’t scale as well as message passing
I For large machines, the latency of directory accesses can severely

degrade performance.
F In a message passing machine, each CPU has its own memory,

nearby and fast.
F For shared memory, each CPU has part of the shared main memory

– accessing a directory may require accessing the memory of a
distant CPU.

I Shared memory moves the data after the cache miss
F this stalls a thread
F message passing can send data in advance and avoid these stalls

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 15 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Summary
Shared-Memory Architectures

I Use cache-coherence protocols to allow each processor to have its
own cache while maintaining (almost) the appearance of having
one shared memory for all processors.

F A typical protocol: MESI
F The protocol can be implemented by snooping or directories.

I Using cache-memory interconnect for interprocessor
communication provides:

F High-bandwidth
F Low-latency, but watch out for fences, etc.
F High cost for large scale machines.

Shared-Memory Programming
I Need to avoid interference between threads.

F Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.

F There are too many possible interleavings to handle intuitively.
F In practice, we don’t formally prove complete programs,

but we use the ideas of formal reasoning.
I Real computers don’t provide sequential consistency.

F Use a thread library.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 16 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Preview

January 22: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.

January 24: Speed-up
Reading: McCool et al., Chapter 2, Section 2.5.

January 26: Energy, Power, and Time
January 29: Performance Loss

Reading: McCool et al., Chapter 2, Section 2.6.
Homework: HW 2 earlybird (11:59pm), HW 3 goes out.

January 31: Parallel Performance: Models
Homework: HW 2 due (11:59pm).

February 2-9: Sorting

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 17 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Review

What is sequential consistency?
Using the MESI protocol, can multiple processors simultaneously
have entries in their caches for the same memory address?
Using the MESI protocol, can multiple processors simultaneously
modify entries in their caches for the same memory address?
How can a cache-coherence protocol be implemented by
snooping?
How can a cache-coherence protocol be implemented using
directories?
What is false sharing (in the reading, but not covered in these
slides)?
Do real machines provide sequential consistency?
How do these issues influence good software design practice?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 18 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Classifying Cache Misses
Compulsory: The first reference to a cache block will cause a
miss.

I Note that the first access should be a write – otherwise the location
is uninitialized.

I A cache can avoid stalling the processor by using “allocate on
write”.

I If a miss is a write, assign a block for the line, start the main
memory read, track which bytes have been written, and merge with
the data from memory when it arrives.

Capacity: The cache is not big enough to hold all of the data
used by the program.
Conflict: Many active memory locations map to the same cache
index.

I If there are more such references than the associativity of the
cache, these will cause conflict misses.

Coherence: A cache block was evicted because another CPU
was writing to it.

I A subsequent read incurs a cache miss.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 19 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Cache Design Trade-Offs (1 of 2)

Capacity: Larger caches have lower miss rates, but longer
access times. This motivates using multiple levels of caches.

I L1: closest to the CPU, smallest capacity (16-64Kbytes), fastest
access (1-3 clock cycles).

I L2: typically 128Kbytes to 1Mbyte, 5-10 cycle access time.
I L3: becoming common, several Mbytes of capacity.

Block Size:
I Larger blocks can lower miss rate by exploiting spatial locality.
I Larger blocks can raise miss rate due to conflict and coherence

misses.
I Larger blocks increase miss penalty by requiring more time to

transfer all that data.
I Typical block sizes are 16 to 256 bytes – sometimes block size

changes with cache level.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 20 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


Cache Design Trade-Offs (2 of 2)
Associativity:

I Increasing associativity generally reduces the number of conflict
misses.

I Increasing associativity makes the cache hardware more
complicated.

I Typical caches are direct mapped to four- or eight-way associative.
I Associativity doesn’t need to be a power of two!

Other stuff
I cache inclusion: is everything in the L1 also in the L2?
I interaction with virtual memory: are cache addresses virtual or

physical?
I coherence protocol details:

Example, Intel uses MESIF, the “F” stands for “forwarding”. If a processor
has a read miss, and another cache has a copy, one of the caches with a
copy will be the “forwarding cache”. The forwarding cache provides the
data because it’s much faster than main memory.

I error detection and creation – caches + cosmic rays = flipped bits.
I and all kinds of other optimizations that are beyond the scope of

this class.
Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 21 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018


False Sharing

False sharing occurs when two CPUs are actively writing different
words in the same cache block.

I Each write forces the other CPU to invalidate its cache block.
I Each read forces the other CPU to change its cache block from
modified or exclusive to shared.

Example: count 3s
I Here’s an implementation with awful performance.
I We create a global array of ints to hold the accumulators for each

process.
I Each time a process finds a 3, it writes to its element in the array.
I This forces the other CPUs whose accumulators are in the same

block to invalidate their cache entry.
I This turns accumulator accesses into main memory accesses.
I And these accesses are serialized: one CPU at a time.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Jan. 19, 2018 22 / 22

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_19
https://en.wikipedia.org/wiki/2018

