
Generalize Reduce and Scan

Mark Greenstreet

CpSc 418 – Jan. 17, 2018

Outline:
Reduce in Erlang
Scan in Erlang

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 1 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Objectives
Understand relationship between reduce and scan
I Both are tree walks.
I The initial combination of values from leaves is identical.
I Reduce propagates the grand total down the tree.
I Scan propagates the total “everything to the left” down the

tree.
Generalized Reduce and Scan
I Understand the role of the Leaf, Combine, and Root

functions.
I Understand the use use of higher-order functions to

implement reduce and scan.
The CS418 class library
I Able to create a tree of processes.
I Able to distribute data and tasks to those processes.
I Able to use the reduce and scan functions from the library.
I Know where to find more information.

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Reduce in Erlang

Build a tree.
Each process creates a lists of random digits.
The processes meet at a barrier so we can measure the time to
count the 3s.
Each process counts its threes.
The processes use reduce to compute the grand total.
Each process reports the grand total and its own tally.
The root process reports the time for the local tallies and the
reduce.
Get the code at

http://www.ugrad.cs.ubc.ca/˜cs418/2017-2/lecture/01-16/code/reduce.erl

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 3 / 13

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/01-16/code/reduce.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

The Reduce Pattern

It’s a parallel version of fold, e.g. lists:foldl.
Reduce is described by three functions:

Leaf(): What to do at the leaves, e.g.
fun() -> count3s(Data) end.

Combine(): What to do at the root, e.g.
fun(Left, Right) -> Left+Right end.

Root(): What to do with the final result. For count 3s, this is just
the identity function.

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 4 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

The wtree module

Part of the course Erlang library.
Operations on worker trees”
wtree:create(NProcs) -> [pid()].

Create a list of NProcs processes, organized as a tree.
wtree:broadcast(W, Task, Arg) -> ok.

Execute the function Task on each process in W. Note: W
means “worker pool”.

wtree:reduce(P, Leaf, Combine, Root) -> term().
A generalized reduce.

wtree:reduce(P, Leaf, Combine) -> term().
A generalized reduce where Root defaults to the identity
function.

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 5 / 13

http://www.ugrad.cs.ubc.ca/~cs418/resources/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Store Locally
Communication is expensive – each process should store its own
data whenever possible.
How do we store data in a functional language?
I Our processes are implemented as Erlang functions that receive

messages, process the message, and make a tail-call to be ready
to receive the next message.

I We add a parameter to these functions, ProcState, that is a
mapping from Keys to Values.

What this means when we write code:
Functions such as Leaf for wtree:reduce or Task for

wtree:broadcast have a parameter for ProcState.
workers:put(ProcState, Key, Value) ->

NewProcState.
Create a new version of ProcState that associates Value with Key.

workers:get(ProcState, Key, Default) -> Value.
Return the value associated with Key in ProcState. If no such value is
found, Default is returned. Note: Default can be a function in which
case it is called to determine a default value – see the documentation.

workers:get(ProcState, Key) -> workers:get(ProcState,
Key, undefined.Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 6 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Count3s using wtree

count3s par(N, P) ->
W = wtree:create(P),
wtree:rlist(W, N, 10, ’Data’),
wtree:reduce(W,

fun(ProcState) -> % Leaf
count3s(workers:get(ProcState, data))

end,
fun(Left, Right) -> Left+Right end % Combine

).

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 7 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Scan in Erlang

Remarkably like reduce.
Reduce has
I an upward pass to compute the grand total
I a downward pass to broadcast the grand total.

Scan has
I an upward pass where the grand total – just like reduce
I On the downward pass, we compute the total of all elements

to the left of each subtree.
Get the code at

http://www.ugrad.cs.ubc.ca/˜cs418/2016-2/lecture/01-16/code/scan.erl

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 8 / 13

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/01-16/code/scan.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

The Scan Pattern

It’s a parallel version of mapfold, e.g. lists:mapfoldl and
lists:mapfoldr.
wtree:scan(Leaf1, Leaf2, Combine, Acc0)
I Leaf1(ProcState) -> Value

Each worker process computes its Value based on its
ProcState.

I Combine(Left, Right) -> Value
Combine values from sub-trees.

I Leaf2(ProcState, AccIn) -> ProcState
Each worker updates its state using the AccIn value – i.e. the
accumulated value of everything to the worker’s “left”.

I Acc0: The value to use for AccIn for the leftmost nodes in the
tree.

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 9 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Scan example: prefix sum

prefix sum par(W, Key1, Key2) ->
wtree:scan(W,
fun(ProcState) -> % Leaf1

lists:sum(wtree:get(ProcState, Key1)) end,
fun(ProcState, AccIn) -> % Leaf2

wtree:put(ProcState, Key2,
prefix sum(wtree:get(ProcState, Key1), AccIn)

) end,
fun(Left, Right) -> % Combine

Left + Right end,
0 % Acc0

).

prefix sum(L, Acc0) ->
element(1,

lists:mapfoldl(fun(X, Y) -> Sum = X+Y, {Sum,Sum} end,
Acc0, L)).

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 10 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

More Examples of scan
Account balance with interest:
I Input: a list of transactions, where each transaction can be a

deposit (add an amount to the balance), a withdrawal
(subtract an amount from the balance), or interest (multiply
the balance by an amount). For example:
[{deposit, 100.00}, {withdraw, 5.43}, {withdraw, 27.75}, {interest, 0.000543}, ...]

I Output: the account balance after each transaction. For
example, if we assume a starting balance of $1000.00 in the
previous example, we get
[1100.00, 1094.57, 1066.82, 1067.40, ...]

Delete 3s
I Given a list that is distributed across NProc processes, delete

all 3s, and rebalance the list so each process has roughly the
same length sublisth.

I Solution (sketch):
2 Using scan, each process determines how many 3s

preceed its segment, the total list length preceeding it,
and the total list length after deleting 3s.

2 Each process deletes its 3s and send portions of its lists
and/or receives list portions to rebalance.Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 11 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

CS418 library vs. Lin & Snyder
Top-down or bottom up?
I Course library:

2 Master process initiates reduce or scan.
2 The Leaf and Combine functions are propagated down

the tree.
2 Tallies are propagated up the tree, and the grand total is

delivered to the master.
2 For scan, the “total of everything to the left” is propagated

down the tree, and each worker process updates its local
ProcState.

I Lin & Snyder
2 The workers initiate reduce or scan.
2 Tallies are propagated up the tree.
2 Totals are propagated down the tree

_ Reduce: everyone gets the grand total
_ Scan: everyone gets the total of everything to the left

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 12 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

Which is better?
Lin & Snyder:
I Better suited for writing real, parallel applications
I In real applications, worker processes perform many

operations, occasionally coordinating using reduce, scan, or
similar operations.

I Lin & Snyder avoid the bottleneck of a master process that
dispatches tasks.

The course library
I It’s implemented and it works.
I Easier for simple examples, especially when making timing

measurements.
2 We can start and stop our “stopwatch” at the master.
2 Avoids some details of how Erlang reports the current

“time”.
I Allows for optimizations at the leaves that Lin & Synder don’t

2 Lin & Snyder just take the combine operator and perform
the combine in the obvious way a the leaves.

2 This ignores optimizations. Consider find the k th largest –
use a heap!

The course library should support both approaches.
I Hopefully, it will someday.

Mark Greenstreet Generalize Reduce and Scan CS 418 – Jan. 17, 2018 13 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_17
https://en.wikipedia.org/wiki/2018

