
Scan

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – January 15, 2018

What is Scan?
Dependencies
Implementing Scan

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 1 / 8

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


Scan: overview

What is scan?
I Given a list, X, with N elements, produde a list Y where the Ith

element of Y is the sum of the first I elements of X, for 1 ≤ I ≤ N.
I Generalizes to any associative operator, just like reduce.

Why scan?
I It’s useful.
I It’s our first “non-obvious” parallel algorithm – scan is an “aha!” for

parallel computing.
I It illustrates the importance of reasoning about dependencies.

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 2 / 8

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


map, foldl, and foldr

We’ve learned about higher order functions in Erlang:
map(Fun, List1) -> List2

I length(List2) = length(List1)
I for all 1 ≤ I ≤ length(List1):
lists:nth(I, List2) = Fun(lists:nth(I, List1))

foldl(Fun, Acc0, List1) -> AccOut

I Combine the elements of List1 in left-to-right order, i.e. first
element of List1 to the last element.

I Start the accumulator what Acc0.
I Return the final value of the accumulator.

foldr(Fun, Acc0, List1) -> AccOut

I Like foldl but accumulates the value in right-to-left order

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 3 / 8

http://erlang.org/doc/man/lists.html#map-2
http://erlang.org/doc/man/lists.html#foldl-3
http://erlang.org/doc/man/lists.html#foldr-3
http://erlang.org/doc/man/lists.html#foldl-3
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


mapfold and scan

mapfoldl(Fun, Acc0, List1) -> {List2, AccOut}
I nth(I, List2) is the result of folding the first codeI elements of
List1 using Fun.

I AccOut is the same as for foldl(Fun, Acc0, List1).
scan: a parallel function similar to mapfoldl.

I If Fun is associative, we can do mapfoldl in parallel using a
tree-pattern similar to reduce.

I Every reduce problem has a corresponding scan version, and
vice-versa.

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 4 / 8

http://erlang.org/doc/man/lists.html#mapfoldl-3
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#foldl-3
http://erlang.org/doc/man/lists.html#mapfoldl-3
http://erlang.org/doc/man/lists.html#mapfoldl-3
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


Dependencies

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 5 / 8

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


Scan: if you’re a theoretician

Let List2 be the list produced by scan(Fun, Acc0, List1).
Each element of List2 can be computed using a reduce.

I Element I has a reduce tree with I-1 nodes.
I Total number of tree nodes is O(N2) where N = length(List1).
I Time is O(log N).
I Time is polylog N, and number of processors is polynomial in N.
I ∴ scan is in NC

NC is a class of problems that are highly parallelizable in theory.
I If a problem is not in NC, it’s probably not a good candidate for

parallel computing.
I If a problem is in NC, it’s worth considering a parallel approach, but

the algorithm that achieved polylog time is probably not practical.
I There won’t be any questions about NC on the homework or exams

– for this class, NC is poetry.

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 6 / 8

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


Scan: Kogge-Stone

Re-use replicated result from the brute-force method.

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 7 / 8

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018


Scan: Schwartz

Use a separate upward and downward pass.

Greenstreet & Mitchell Scan CpSc 418 – Jan. 15, 2018 8 / 8

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_15
https://en.wikipedia.org/wiki/2018

