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Scan: overview

What is scan?
I Given a list, X, with N elements, produde a list Y where the Ith

element of Y is the sum of the first I elements of X, for 1 ≤ I ≤ N.
I Generalizes to any associative operator, just like reduce.

Why scan?
I It’s useful.
I It’s our first “non-obvious” parallel algorithm – scan is an “aha!” for

parallel computing.
I It illustrates the importance of reasoning about dependencies.
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map, foldl, and foldr

We’ve learned about higher order functions in Erlang:
map(Fun, List1) -> List2

I length(List2) = length(List1)
I for all 1 ≤ I ≤ length(List1):
lists:nth(I, List2) = Fun(lists:nth(I, List1))

foldl(Fun, Acc0, List1) -> AccOut

I Combine the elements of List1 in left-to-right order, i.e. first
element of List1 to the last element.

I Start the accumulator what Acc0.
I Return the final value of the accumulator.

foldr(Fun, Acc0, List1) -> AccOut

I Like foldl but accumulates the value in right-to-left order
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mapfold and scan

mapfoldl(Fun, Acc0, List1) -> {List2, AccOut}
I nth(I, List2) is the result of folding the first codeI elements of
List1 using Fun.

I AccOut is the same as for foldl(Fun, Acc0, List1).
scan: a parallel function similar to mapfoldl.

I If Fun is associative, we can do mapfoldl in parallel using a
tree-pattern similar to reduce.

I Every reduce problem has a corresponding scan version, and
vice-versa.
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Dependencies
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Scan: if you’re a theoretician

Let List2 be the list produced by scan(Fun, Acc0, List1).
Each element of List2 can be computed using a reduce.

I Element I has a reduce tree with I-1 nodes.
I Total number of tree nodes is O(N2) where N = length(List1).
I Time is O(log N).
I Time is polylog N, and number of processors is polynomial in N.
I ∴ scan is in NC

NC is a class of problems that are highly parallelizable in theory.
I If a problem is not in NC, it’s probably not a good candidate for

parallel computing.
I If a problem is in NC, it’s worth considering a parallel approach, but

the algorithm that achieved polylog time is probably not practical.
I There won’t be any questions about NC on the homework or exams

– for this class, NC is poetry.
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Scan: Kogge-Stone

Re-use replicated result from the brute-force method.
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Scan: Schwartz

Use a separate upward and downward pass.
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