
Reduce – The Pattern

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – January 12, 2018

Surviving this Course
The Reduce Pattern
Examples

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 1 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Survival: what I learned from piazza

From Piazza: “. . . HW1 Q3 took me 3–4 hours”.
Yikes! If Q3 took you 3–4 hours, then I’ll guess 1-2 hours for each
of Q1 and Q2, and 6 hours for Q4.
Thats 12–13 hours for the HW.
Add lectures, reading, and a PIKA, and we’re looking at 20 hours
for the week.
If you’re taking five classes, that’s 100 hours/week – no time for
eating, sleeping, brushing your teeth, or parties.
Not sustainable.

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 2 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


How to survive
Piazza lets me know that there might be a problem, but it doesn’t
let me know if there is a problem.

I Is everyone drowning in the workload?
I Are there just a few students who need some help to catch-up?
I Are there just a few students who will complain about the workload

no matter how easy it is?
The solution: office hours and tutorial

I You outnumber the instructors and TAs.
I Use this to your advantage.
I If it is taking you 3-4 hours to solve one HW problem, you can save

time by going to office hours or tutorial and asking questions.
This solves the instructors dilemma

I If 80% of the class is overwhelmed, I’ll have 20–30 or more
students at office hours. I’ll find out where you’re stuck, and I’ll
adjust the course to match.

I If a few of you need a bit of help to get going with Erlang, parallel
programming, timing measurements, or other stuff, we’ll get it taken
care of.

I Either way, if you are finding the workload too high, go to office
hours and/or tutorials.

I You outnumber the instructors and TAs – we’ll adjust.Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 3 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Objectives

Understand the reduce pattern.
Solve simple problems using reduce.
Understand how to write Combine functions.

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 4 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Reduce Review

The basic idea:
I We have a task that can be divided over P processes.
I We need to combine the results from the sub-tasks to get the main

result.
I This involved communication between processes.

F Communication is slow. We write λ for the communication time.
F If each worker sends its result to the master process, this takes λP

time.
F If the workers combine their results using a tree, it takes λ log2 P time.

I Reduce reduces the communication overhead.
F Parallel approaches can be used efficiently for smaller problems.
F If N is the problem size, we can make effective use of a bigger P for a

smaller N.

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 5 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Beyond Poetry

Some examples we will consider:
Finding the largest element in a list or array distributed across P
processes.
Finding the sum of the elements in a list or array distributed
across P processes.
Finding the average of the elements in a list or array distributed
across P processes.
Removing adjacent duplicates (see PIKA2).

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 6 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


How reduce works

Using the sum example:
In C/Java/Python if we write

A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z

The operations are performed left to right:
((((((((((((((((((((((((A+B)+C)+D)+E)+F)+G)+H)+I)+J)+K)+L)+M)+N)+O)+P)+Q)+R)+S)+T)+U)+V)+W)+X)+Y)+Z

If we do the same with reduce, we have each process do a
sub-sequence of the original arguments:

(([A+B+C+D+E+F] + [G+H+I+J+K+L+M]) + ([N+O+P+Q+R+S] + [T+U+V+W+X+Y+Z]))

We have re-ordered the additions.
Why is this OK?

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 7 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Associative (and Commutative) Operators

An operation is associative if we can re-arrange the parentheses
while preserving the left-to-right order of the operands and get the
same result.

I Addition is associative if you’re a mathematician.
I Addition is almost associative if you’re working with floating point

numbers.
I Addition is associative if you’re working with integers.
I Similar remarks for multiplication, finding the maximum, and many

other operations.
What about commutative?

I We’re at a university, so “associative and commutative” just rolls off
the tongue because it makes is sound so mathematical and
therefore scholarly.

I An operator, ◦ is commutative if A ◦ B = B ◦ A for all A and B.
I Commutative is nice because we can re-order the operations

however we like – we don’t need to preserve left-to-right order.

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 8 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Do we care about commutativity?

No: while being able to re-order more may seem like a good idea,
e.g., use results as they become available, in practice this often
isn’t worth it.

I Figuring out which results are available requires synchronization.
I This incurs the λ cost for global actions.

Maybe: if the operator is associative but not commutative, then
we care about the left-to-right order of the data.

I The summaries that we pass through combine will say something
about the left-to-right order.

I Often these summaries have the form of:
{LeftSummary, OverallSummary, RightSummary}

Yes: if the underlying hardware shuffles the data ordering (we’ll
see this in CUDA), then we are much happier if the operation for
the reduce is commutative.

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 9 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018


Examples

From the PIKA.

Greenstreet & Mitchell Reduce – The Pattern CpSc 418 – Jan. 12, 2018 10 / 10

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

