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Survival: what I learned from piazza

From Piazza: “. . . HW1 Q3 took me 3–4 hours”.
Yikes! If Q3 took you 3–4 hours, then I’ll guess 1-2 hours for each
of Q1 and Q2, and 6 hours for Q4.
Thats 12–13 hours for the HW.
Add lectures, reading, and a PIKA, and we’re looking at 20 hours
for the week.
If you’re taking five classes, that’s 100 hours/week – no time for
eating, sleeping, brushing your teeth, or parties.
Not sustainable.
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How to survive
Piazza lets me know that there might be a problem, but it doesn’t
let me know if there is a problem.

I Is everyone drowning in the workload?
I Are there just a few students who need some help to catch-up?
I Are there just a few students who will complain about the workload

no matter how easy it is?
The solution: office hours and tutorial

I You outnumber the instructors and TAs.
I Use this to your advantage.
I If it is taking you 3-4 hours to solve one HW problem, you can save

time by going to office hours or tutorial and asking questions.
This solves the instructors dilemma

I If 80% of the class is overwhelmed, I’ll have 20–30 or more
students at office hours. I’ll find out where you’re stuck, and I’ll
adjust the course to match.

I If a few of you need a bit of help to get going with Erlang, parallel
programming, timing measurements, or other stuff, we’ll get it taken
care of.

I Either way, if you are finding the workload too high, go to office
hours and/or tutorials.
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Objectives

Understand the reduce pattern.
Solve simple problems using reduce.
Understand how to write Combine functions.
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Reduce Review

The basic idea:
I We have a task that can be divided over P processes.
I We need to combine the results from the sub-tasks to get the main

result.
I This involved communication between processes.

F Communication is slow. We write λ for the communication time.
F If each worker sends its result to the master process, this takes λP

time.
F If the workers combine their results using a tree, it takes λ log2 P time.

I Reduce reduces the communication overhead.
F Parallel approaches can be used efficiently for smaller problems.
F If N is the problem size, we can make effective use of a bigger P for a

smaller N.
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Beyond Poetry

Some examples we will consider:
Finding the largest element in a list or array distributed across P
processes.
Finding the sum of the elements in a list or array distributed
across P processes.
Finding the average of the elements in a list or array distributed
across P processes.
Removing adjacent duplicates (see PIKA2).
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How reduce works

Using the sum example:
In C/Java/Python if we write

A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z

The operations are performed left to right:
((((((((((((((((((((((((A+B)+C)+D)+E)+F)+G)+H)+I)+J)+K)+L)+M)+N)+O)+P)+Q)+R)+S)+T)+U)+V)+W)+X)+Y)+Z

If we do the same with reduce, we have each process do a
sub-sequence of the original arguments:

(([A+B+C+D+E+F] + [G+H+I+J+K+L+M]) + ([N+O+P+Q+R+S] + [T+U+V+W+X+Y+Z]))

We have re-ordered the additions.
Why is this OK?
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Associative (and Commutative) Operators

An operation is associative if we can re-arrange the parentheses
while preserving the left-to-right order of the operands and get the
same result.

I Addition is associative if you’re a mathematician.
I Addition is almost associative if you’re working with floating point

numbers.
I Addition is associative if you’re working with integers.
I Similar remarks for multiplication, finding the maximum, and many

other operations.
What about commutative?

I We’re at a university, so “associative and commutative” just rolls off
the tongue because it makes is sound so mathematical and
therefore scholarly.

I An operator, ◦ is commutative if A ◦ B = B ◦ A for all A and B.
I Commutative is nice because we can re-order the operations

however we like – we don’t need to preserve left-to-right order.
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Do we care about commutativity?

No: while being able to re-order more may seem like a good idea,
e.g., use results as they become available, in practice this often
isn’t worth it.

I Figuring out which results are available requires synchronization.
I This incurs the λ cost for global actions.

Maybe: if the operator is associative but not commutative, then
we care about the left-to-right order of the data.

I The summaries that we pass through combine will say something
about the left-to-right order.

I Often these summaries have the form of:
{LeftSummary, OverallSummary, RightSummary}

Yes: if the underlying hardware shuffles the data ordering (we’ll
see this in CUDA), then we are much happier if the operation for
the reduce is commutative.
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Examples

From the PIKA.
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