Reduce — The Pattern

Mark Greenstreet and lan M. Mitchell

CpSc 418 — January 12, 2018

@ Surviving this Course
@ The Reduce Pattern
@ Examples

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 1/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Survival: what | learned from piazza

From Piazza: “... HW1 Q3 took me 3—4 hours”.

@ Yikes! If Q3 took you 3—4 hours, then I'll guess 1-2 hours for each
of Q1 and Q2, and 6 hours for Q4.

@ Thats 12—13 hours for the HW.

@ Add lectures, reading, and a PIKA, and we’re looking at 20 hours
for the week.

@ If you're taking five classes, that’s 100 hours/week — no time for
eating, sleeping, brushing your teeth, or parties.

@ Not sustainable.

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 2/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

How to survive

@ Piazza lets me know that there might be a problem, but it doesn’t
let me know if there is a problem.

» Is everyone drowning in the workload?

» Are there just a few students who need some help to catch-up?

» Are there just a few students who will complain about the workload
no matter how easy it is?

@ The solution: office hours and tutorial

» You outnumber the instructors and TAs.

» Use this to your advantage.

» If it is taking you 3-4 hours to solve one HW problem, you can save
time by going to office hours or tutorial and asking questions.

@ This solves the instructors dilemma

» If 80% of the class is overwhelmed, I'll have 20—30 or more
students at office hours. I'll find out where you're stuck, and I'll
adjust the course to match.

» If a few of you need a bit of help to get going with Erlang, parallel
programming, timing measurements, or other stuff, we’ll get it taken
care of.

» Either way, if you are finding the workload too high, go to office

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 3/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Objectives

@ Understand the reduce pattern.
@ Solve simple problems using reduce.
@ Understand how to write Combine functions.

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 4/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Reduce Review

@ The basic idea:

» We have a task that can be divided over P processes.
» We need to combine the results from the sub-tasks to get the main
result.
» This involved communication between processes.
* Communication is slow. We write X for the communication time.

* |If each worker sends its result to the master process, this takes AP
time.

* |f the workers combine their results using a tree, it takes X log, P time.
» Reduce reduces the communication overhead.

* Parallel approaches can be used efficiently for smaller problems.

* If N is the problem size, we can make effective use of a bigger P for a
smaller N.

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 5/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Beyond Poetry

Some examples we will consider:
@ Finding the largest element in a list or array distributed across P
processes.

@ Finding the sum of the elements in a list or array distributed
across P processes.

@ Finding the average of the elements in a list or array distributed
across P processes.

@ Removing adjacent duplicates (see PIKA2).

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 6/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

How reduce works

Using the sum example:
@ In C/Java/Python if we write
A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z
The operations are performed left to right:
(CCCCCCCeeeeeeeeecCCCC((A+B)+C)+D) +E) +F) +G) +H) +I) +J) +

@ If we do the same with reduce, we have each process do a
sub-sequence of the original arguments:

(([A+B+C+D+E+F] + [G+H+I+J+K+L+M]) + ([N+O+P+Q+R+S] +
@ We have re-ordered the additions.
@ Why is this OK?

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 7/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Associative (and Commutative) Operators

@ An operation is associative if we can re-arrange the parentheses
while preserving the left-to-right order of the operands and get the
same result.

» Addition is associative if you're a mathematician.

» Addition is almost associative if you're working with floating point
numbers.

» Addition is associative if you're working with integers.

» Similar remarks for multiplication, finding the maximum, and many
other operations.

@ What about commutative?

» We’re at a university, so “associative and commutative” just rolls off
the tongue because it makes is sound so mathematical and
therefore scholarly.

» An operator, o is commutative if Ao B= Bo Aforall Aand B.

» Commutative is nice because we can re-order the operations
however we like — we don’t need to preserve left-to-right order.

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 8/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Do we care about commutativity?

@ No: while being able to re-order more may seem like a good idea,
e.g., use results as they become available, in practice this often
isn’t worth it.

» Figuring out which results are available requires synchronization.
» This incurs the \ cost for global actions.

@ Maybe: if the operator is associative but not commutative, then

we care about the left-to-right order of the data.

» The summaries that we pass through combine will say something
about the left-to-right order.
» Often these summaries have the form of:

{LeftSummary, OverallSummary, RightSummary}
@ Yes: if the underlying hardware shuffles the data ordering (we'll
see this in CUDA), then we are much happier if the operation for
the reduce is commutative.

Greenstreet & Mitchell Reduce — The Pattern CpSc 418 — Jan. 12,2018 9/10


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

Examples

From the PIKA.

Greenstreet & Mitchell Reduce — The Pattern


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_12
https://en.wikipedia.org/wiki/2018

