
Processes and Messages

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – January 8, 2018

Erlang Processes
Sending and Receiving Messages
Best Practices with Messages
Table of Contents

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 1 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Objectives

Introduce Erlang’s features for concurrency and parallelism
I Spawning processes.
I Sending and receiving messages.

Describe timing measurements for these operations and the
implications for writing efficient parallel programs.

I Communication often dominates the runtime of parallel
programs.

The source code for the examples in this lecture is available here:
procs.erl.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 2 / 23

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Processes – Overview
The built-in function spawn creates a new process.
Each process has a process-id, pid.

I The built-in function self() returns the pid of the calling process.
I spawn returns the pid of the process that it creates.
I The simplest form is spawn(Fun).

F A new process is created – “the child”.
F The pid of the new process is returned to the caller of spawn.
F The function Fun is invoked with no arguments in that process.
F The parent process and the child process are both running.
F When Fun returns, the child process terminates. The return value is

discarded.

Operations on pids
I send messages: Pid ! Message
I debug, see: http://erlang.org/doc/apps/debugger/debugger_chapter.html

and http://erlang-tutorial.blogspot.ca/2010/03/erlang-debugging.html,
but I’ll admit that I haven’t used the debugger myself.

I get all kinds of information about the process:
process info(Pid, What).

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 3 / 23

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang-tutorial.blogspot.ca/2010/03/erlang-debugging.html
http://erlang.org/doc/man/erlang.html#process_info-2
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Processes – a friendly example
Writing the code:
hello(N) when is integer(N), N >= 0 ->

[spawn(fun() -> io:format(
"hello world from process ∼b∼n", [I])

end)
|| I <- lists:seq(1,N)

].

Running the code:
1> c(procs).
{ok,procs}
2> procs:hello(3).
hello world from process 1
hello world from process 2
hello world from process 3
[<0.40.0>,<0.41.0>,<0.42.0>]

when is integer(N), N >= 0 is a guard.
See slide 26 or Guards, Guards! in Learn You Some Erlang.
[Expr || Var <- List] is a list comprehension.
See slide 27 or List Comprehensions in Learn You Some Erlang.
[<0.40.0>,<0.41.0>,<0.42.0>] is the list of pids returned by
procs:hello(3).

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 4 / 23

http://learnyousomeerlang.com/syntax-in-functions#guards-guards
http://learnyousomeerlang.com
http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Messages

To solve tasks in parallel, the processes need to communicate.
Message passing is fully-integrated into Erlang – it makes Erlang
a simple language for getting started.
Outline of the rest of the lecture:

I Sending and Receiving Messages
I Messages are asynchronous
I Message ordering
I Best Practices for messages

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 5 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Sending and Receiving Messages

Sending a message: Pid ! Expr.
I Expr is evaluated, and the result is sent to process Pid.
I We can send any Erlang term: integers, atoms, lists, tuples, . . .

Receiving a message:
receive

Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

If there is a pending message for this process that matches one of
the patterns,

I The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.

I Otherwise, the process blocks until such a message is received.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 6 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Message passing in Erlang is asynchronous

by Pid1 has not yet been received by Pid2.
Both Pid1 and Pid2 are busy. The message sent

Pid2

Pid1

busy receive ...

busy busyPid2 ! Msg

busy

Asynchronous communication lets us overlap communication with
computation.

I This can be very important for lowering the impact of high
communication costs.

But you need to be careful about synchronization.
I If you need to guarantee that process Pid1 does not proceed until
Pid2 receives the message.

I Have Pid2 send an acknowledgment back to Pid1, and have
Pid1 wait for the acknowledgement.

I Conclusion: we can implement synchronous communication using
asynchronous messages.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 7 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Message Ordering

receive

busy busy

receive

Pid3!M13

Pid2!M32 busy?M13

?M32 ?M12Pid2

Pid1

Pid3

Pid2!M12

busy blocked

blocked

Given two processes, Proc1 and Proc2, messages sent from
Proc1 to Proc2 are received at Proc2 in the order in which they
were sent.
Message delivery is reliable: if a process doesn’t terminate, any
message sent to it will eventually be delivered.
Other than that, Erlang makes no ordering guarantees.

I In particular, the triangle inequality is not guaranteed.
I For example, process Proc1 can send message M1 to process

Proc2 and after that send message M2 to Proc3.
I Process Proc3 can receive the message M2, and then send

message M3 to process Proc2.
I Process Proc2 can receive messages M1 and M3 in either order.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 8 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Adding two numbers using processes and messages
The plan:

I We’ll spawn a process in the shell for adding two numbers.
I This child process receives two numbers, computes the sum, and

sends the result back to the parent.

add proc(PPid)
when is pid(PPid) ->

receive
A -> receive

B ->
PPid ! A+B

end
end.

adder() ->
MyPid = self(),
spawn(fun() ->
add proc(MyPid)

end).

3> Apid = procs:adder().
<0.44.0>
4> Apid ! 2.
2
5> Apid ! 3.
3
6> receive Sum -> Sum end.
5

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 9 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Best Practices for Message

Erlang has a very simple set of primitive operations for processes
and communication: spawn, ! (send), and receive. That’s it!.
Using these operations well requires discipline and experience.
The rest of this lecture gives an overview.

I Reactive processes and recursion: what about the call stack?
I Tail-call elimination: an important optimization performed by the

Erlang compiler. Erlang processes depend on it to avoid stack
overflows.

I Tagging messages: making sure that you receive the message you
intended.

I Time-outs: avoid hanging forever when something goes wrong.
I Communication patterns: as Learn You Some Erlang said “We love

messages, but we keep them secret”.

This is just an overview – you’ll see more as the term goes on.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 10 / 23

http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Reactive Processes and Recursion
Often, we want processes that do more than add two numbers together.
We’ll use an accumulator as an example.

acc proc(Tally)
when is integer(Tally) ->

receive
N when is integer(N) ->

acc proc(Tally+N)/2,
{Pid, total} ->

Pid ! Tally,
acc proc(Tally)
Tally+3;

exit -> Tally
end.

accumulator() ->
spawn(fun() ->
acc proc(0)

end).

7> BPid = procs:accumulator().
<0.53.0>
8> BPid ! 1.
1
9> BPid ! 2.
2
10> BPid ! 3.
3
11> BPid ! {self(), total}.
{<0.33.0>, total}
12> receive T1 -> T1 end.
6
% continued on next slide

Nice, but what’s up with the '/2'and '+3'?
I It’s there to illustrate a point about recursive functions.
I See the next slide.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 11 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Reactive Processes and Recursion
Often, we want processes that do more than add two numbers together.
We’ll use an accumulator as an example.

acc proc(Tally)
when is integer(Tally) ->

receive
N when is integer(N) ->

acc proc(Tally+N)/2,
{Pid, total} ->

Pid ! Tally,
acc proc(Tally)
Tally+3;

exit -> Tally
end.

accumulator() ->
spawn(fun() ->
acc proc(0)

end).

% continued from previous slide
13> BPid ! 4.
4
14> BPid ! {self(), total}.
{<0.33.0>, total}
15> BPid ! 5.
5
16> BPid ! 6.
6
17> BPid ! {self(), total}.
{<0.33.0>, total}
18> receive T2 -> T2 end.
10
19> receive T3 -> T3 end.
21

Nice, but what’s up with the '/2'and '+3'?
I It’s there to illustrate a point about recursive functions.
I See the next slide.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 11 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

The many stack frames of acc proc

acc stack(N) ->
AccPid = accumulator(),
[AccPid ! I || I <- lists:seq(1, N)],
AccPid ! {self(), total},
receive Tally -> Tally end,
{stack size, Size} =

process info(AccPid, stack size),
AccPid ! exit,
io:format(

"N=~b, stack size = ~b, Tally=~b~n",
[N, Size, Tally]).

N Size
0 3
1 4
2 5
3 6

10 13
100 103

1000 1003
10000 10003

100000 100003
N N + 3

Stack size grows linearly with N.
Erlang is very efficient with its stack – just one Erlang “word” per
call of the acc proc function.
However, if we have some kind of reactive process, we’ll
eventually run out of memory for the stack.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 12 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Cleaning up acc proc

From slide 11: “what’s up with the '/2'and '+3'?”
Let’s delete that useless code.

acc proc2(Tally)
when is integer(Tally) ->

receive
N when is integer(N) ->

acc proc(Tally+N);
{Pid, total} ->

Pid ! Tally,
acc proc(Tally);

exit -> ok
end.

accumulator2() ->
% spawns acc proc2(0).

acc stack2() ->
% uses accumulate2().

N Size
0 2
1 2
2 2
3 2

10 2
100 2

1000 2
10000 2

100000 2
N 2

Holy stack frames, Batman!!! What happened?

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 13 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

The Truth about Stack Frames

return address

stack
top of

actuals

locals

return value

The figure at the left shows how stack
frames are often presented in first or second
year CS courses.

When a function is called, we expect a new
frame to be allocated.

I But what happens if the caller just returns
the value of the callee?

I When the callee returns, the return value is
copied, and the callee returns

(according to
introductory CS).

I A more efficient approach is to overwrite the
caller’s stack frame with a new frame for the
caller.

I This is called tail-call elimination.

Tail call elimination turns tail-recursive
functions into while-loops.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 14 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

The Truth about Stack Frames

stack
top of

actuals

locals

actuals

locals

return value

return address

return value

return address

The figure at the left shows how stack
frames are often presented in first or second
year CS courses.
When a function is called, we expect a new
frame to be allocated.

I But what happens if the caller just returns
the value of the callee?

I When the callee returns, the return value is
copied, and the callee returns.

(according to
introductory CS).

I A more efficient approach is to overwrite the
caller’s stack frame with a new frame for the
caller.

I This is called tail-call elimination.

Tail call elimination turns tail-recursive
functions into while-loops.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 14 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

The Truth about Stack Frames

return address

actuals

locals

stack
top of

return value

When a function is called, we expect a new
frame to be allocated.

I But what happens if the caller just returns
the value of the callee?

I When the callee returns, the return value is
copied, and the callee returns (according to
introductory CS).

I A more efficient approach is to overwrite the
caller’s stack frame with a new frame for the
caller.

I This is called tail-call elimination.

Tail call elimination turns tail-recursive
functions into while-loops.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 14 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Remarks about Tail call elimination

Many introductory CS courses teach teach a big lie about
recursion:

I The claim is that iteration is faster than recursion.
I With a good compiler, they can be the same.
I You should write whichever version is clearer.

Tail call elimination in various languages:
I Erlang: mandatory – otherwise, reactive processes won’t work.
I Compilers for most functional languages (e.g. Haskell, Lisp, ML,

Racket, . . .) perform tail-call elimination.
I Java does not perform tail-call elimination – it messes with the

stack based privilege management – “it seemed like a good idea at
the time”.

I gcc and g++ perform tail call elimination when -O is given.
I Python forbids tail-call elimination – Guido doesn’t like it.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 15 / 23

http://neopythonic.blogspot.ca/2009/04/tail-recursion-elimination.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Tagging messages
It’s a very good idea to include “tags” with messages.
This prevents your process from receiving an unintended message:

I “Oh, I forgot that another process was going to send me that. I thought
it would happen later.”

I Or, Pid1 sends three messages to Pid2 and you think you knew the
order, but a change in the code for one process breaks the code.

Here’s an example of a “typical” tagged message:
ToPid ! {FromPid, Tag, Data}

Where:
I ToPid – the process that will receive the message.
I FromPid – the process sending the message, i.e. self().
I Tag – something to indicate the intended purpose of the message,

often an atom.
I Data – the actual content of the message.

For example, my accumulator might be better if instead of just
receiving an integer, it received

{ FromPid, add, 2}

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 16 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Time Outs – Why we need them

Sometimes bad things happen
I A process dies and never sends a message we expected.
I We made a typo when tagging a message, and it doesn’t match the

pattern in the receive expression.
I . . .

A receive can block forever if it doesn’t match a message in the
in-box.
Or, we can use time-outs
receive

Pattern1 -> Expr1;
Pattern2 -> Expr2;
. . .
PatternN -> ExprN
after TimeOut -> % TimeOut is in milliseconds
OopsLetsTryToRecover

end

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 17 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Time Outs are Good

Hanging the Erlang shell while waiting for a blocked receive can
be painful.

I We can ˆC out of the Erlang shell.
I But I haven’t found a consistent way to recover.

We can add a time-out to the receive operation.
I What should we do in the after clause?
I Often, we should just print some error message and give up.
I misc:msg dump(Who, PatternList) from the CS418 Erlang

library can be helpful.
F Who is a string to describe what function/module/etc was attempting

the receive that had the time-out.
F PatternList is a list of strings – these can be cut-and-pasted from

the receive expression. They report what patterns Who was looking
for.

F msg dump prints the patterns and then reports all pending messages
in the processes in-box.

F This can make it easy to spot typos and other errors that led to the
time-out.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 18 / 23

https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#msg_dump-2
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Time Outs are Bad

The value for TimeOut is wrong (no matter what you choose):
I If the value is too small, then code will fail when you try to scale

your application to larger problems or larger networks of machines.
I If the value is too large, then you will spend too long waiting for

time-outs.
Conclusion:

I Time-outs are great for debugging.
I Time-outs can be important in production code, especially in

networked applications where we are concerned about machines
going down, network connectivity failing, etc.

I If this were a course on high-reliability networked applications, we’d
discuss time-outs in more detail.

I For this course, time-outs are great for debugging, but you should
be aware of their limitations.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 19 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Communications Patterns
Communication is often the critical design consideration for
parallel software.

I We will characterize parallel algorithms by their communication
patterns: trees, rings, meshes, butterflies, random, etc.

I We will also see that the implementation of physical communication
links is a key distinguishing feature of parallel architectures.

I We will write functions that abstract communication patterns to
provide a bridge between the software and implementation.

This means you won’t be writing ! (send) or receive very often.
I Unless we specifically ask you to. ,.
I But you’ll see that this stuff is happening “under the hood” – e.g.

when your code crashes and we print a backtrace.
I You also need to make reasonable assumptions about the

communication actions of our API code to get good performance.
For more,

I We’ll be looking at trees of processes in the coming week.
I See also LYSE , We love messages, but we keep them secret.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 20 / 23

http://learnyousomeerlang.com
http://learnyousomeerlang.com/more-on-multiprocessing#secret-messages
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Summary

Processes are easy to create in Erlang.
I The spawn mechanism can be used to start other processors on

the same CPU or on machines spread around the internet.
Processes communicate through messages

I Message passing is asynchronous.
I The receiver can use patterns to select a desired message.
I Tail-recursion is essential for implementing processes that can

handle an arbitrary number of messages.
F Your instructors lied to you if they told you that iteration is intrinsically

faster than recursion.
I Tagging and time-outs are important for writing robust code.
I We usually abstract process creation and communication by writing

APIs that support common communication patterns.

Now, we’re ready to plunge into real, parallel algorithms and
software!

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 21 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Preview

January 10: Reduce – The Algorithm
Reading: Learn You Some Erlang, Errors and Exceptions through

A Short Visit to Common Data Structures
January 12: Reduce – The Pattern

Reading: Lin & Snyder, chapter 5, pp. 112–125
January 15: Scan

Homework: Homework 1 deadline for early-bird bonus (11:59pm)
Homework 2 goes out (due Jan. 31) – Reduce and Scan

January 17: Reduce & Scan Examples
Homework: Homework 1 due 11:59pm

January 19 & 22: Parallel Architecture
January 24 – 31: Performance Analysis
February 2 – 7: Sorting with Shared Memory
February 9 – 16: TBD
February 19 – 23: Midterm break
February 28: Midterm
March: Data Parallel Computing, GPUs, and CUDA

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 22 / 23

http://learnyousomeerlang.com
http://learnyousomeerlang.com/errors-and-exceptions
http://learnyousomeerlang.com/a-short-visit-to-common-data-structures
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/hw1.pdf
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/hw1.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Review Questions (1 of 2)

How do you spawn a new process in Erlang?
What guarantees does Erlang provide (or not) for message
ordering?
Give an example of using patterns to select messages.
Why is it important to use a tail-recursive function for a reactive
process?

I In other words, why is it a bad idea to use a head-recursive function
for a reactive process.

I The answer isn’t explicitly on the slides, but you should be able to
figure it out from what we’ve covered.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 23 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Review Questions (2 of 2)

The c3s v1 and/or c3s v2 functions in procs.erl implement a (very
inefficient) way to count the 3s in a list.

One of c3s v1 or c3s v2 works correctly, the other does not.
Compile the code and try them to determine which is which.
Explain the differences between the two functions and how that
leads to one working and the other failing.
Implement the message flushing described in LYSE to show
pending messages on a time-out. Use it with the receive
operations for these count-3s functions (the receive operations are
in related functions).
How does the message-flush make the error obvious?
Identify the recursive functions in this example.
One of these recursive functions is not tail recursive. Which one?
Rewrite the non tail-recursive function to be tail-recursive.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 24 / 23

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/src/procs.erl
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Supplementary material

List Comprehensions
Guards
Tracing execution of Erlang processes

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 25 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Guards
Patterns can include guards:

Pattern when BoolExpr
This pattern matches a Term iff:

I The structure of Term matches Pattern, and
I BoolExpr is satisfied.
I BoolExpr can consist of constants, variables, arithmetic and boolean

operations, and comparisons.
I Erlang is very restrictive about what functions you can use.

F built-in functions that have no side-effects.
F some handy ones: element(N, Tuple), is integer(X), is list(X),

is tuple(X), . . .

More elaborate guards can be written.
I BoolExpr1, BoolExpr2 is roughly andalso.
I BoolExpr1; BoolExpr2 is roughly orelse.
I The “roughly” bit is because they handle exceptions and nesting differently.

See Guards, Guards! in LYSE and/or Erlang Language Reference –
Expressions → Guard Sequences in the Erlang documentation.

Using guards sensibly can help catch errors early and make your code
easier to read my making your assumptions explicit.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 26 / 23

http://learnyousomeerlang.com/syntax-in-functions#guards-guards
http://learnyousomeerlang.com
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/reference_manual/expressions.html
http://www.erlang.org/doc/reference_manual/expressions.html#id78951
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

List Comprehensions

The higher-order functions map and filter are used frequently
in functional programs.

I Erlang has a simple syntax for such operations.
I It’s called a List Comprehension.
I [Expr || Var <- List, Cond, ...].
I Expr is evaluated with Var set to each element of List that satisfies

Cond.
Example:
20>R = misc:rlist(5, 1000).
[444,724,946,502,312].
21>[X*X || X <- R, X rem 3 == 0].
[197136,97344].

See also List Comprehensions in LYSE .

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 27 / 23

http://erlang.org/doc/man/lists.html#map-2
http://erlang.org/doc/man/lists.html#filter-2
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#rlist-2
http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Tracing Processes
When you implement a reactive process, it can be handy to trace the
execution. Here’s a simple approach:

Add an io:format call when entering the function and after
matching each receive pattern.
Example:
acc proc(Tally) ->

io:format("∼p: acc proc(∼b)∼n", [self(), Tally]),
receive
N when is integer(N) ->
io:format("∼p: received ∼b∼n", [self(), N]),
acc proc(Tally+N);

Msg = {Pid, total}
io:format("∼p: received ∼p∼n", [self(), Msg]),
Pid ! Tally,
acc proc(Tally)

end.

Try it (e.g. with the example from slide 11).
Don’t forget to delete (or comment out) such debugging output
before releasing your code.

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 28 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

Table of Contents

Objectives
Processes

I “hello world” example
Messages

I Sending and Receiving
Messages

I Messages are asynchronous
I Message ordering

Best Practices
I Processes and Recursion

F Ex.: addding two numbers
F Tail call elimination

I Tagging Messages
I Time-Outs
I Communication Patterns

Summary
Preview of upcoming lectures
Review of this lecture
Supplementary material

I Guards
I List Comprehensions
I Tracing Processes

Table of Contents

Greenstreet & Mitchell Processes and Messages CpSc 418 – Jan. 8, 2018 29 / 23

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/September_8
https://en.wikipedia.org/wiki/2018

