
Parallel Computation

Mark Greenstreet and Ian M. Mitchell

CpSc 418 – January 3, 2018

Why parallel programming matters
Key aspects of parallel computing:
I Architecture, performance, algorithms, paradigms.

Course overview
Our first parallel program

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 1 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Why Parallel Computation Matters: POWER

1990 2000 2010

100MHz

 1GHz

 10GHz

year

cl
o
ck

 f
re

q
u
e
n
cy

single core
double core
triple core
quad core
hex core

3.3GHz

2
0

0
3

51% annual clock freq. growth

 25W

 50W

 75W

100W

125W

150W

p
o
w

e
r

co
n
su

m
p
tio

n
 (

w
a
tt
s)

Clock Speed and Power of Intel Processors vs. Year Releaseda

In the good-old days, processor performance doubled roughly every
1.5 years.
Single thread performance has seen small gains in the past 14 years.
If the trend had continued, we would have >1000GHz CPUs today. ,

aSee http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 2 / 24

http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Welcome to Parallel Computing

Sequential computing is all the same
I Architecture: IBM 360 = PDP 11 = Intel X86 = ARM = . . .
I Programming languages: Cobol = Fortran = C = C++ = Java

= Python = . . .
Parallel computing doesn’t have a dominant architecture or
programming paradigm
I Architecture: multi-core, super-scalar, multi-threading,

shared-memory, clusters, GPUs, . . .
I Programming paradigms: PThreads, MPI, CUDA, Hadoop,

. . .
I Platforms: multi-core mobile devices, multi-core desktops and

laptops, GPU based-accelerators, data centers, clouds,
scientific supercomputers.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 3 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Key Concepts of Parallel Computing

On slide 3 we described the diversity of parallel computing.
I There are unifying concepts.

Scalable parallelism: divide your task in a way that scales with
problem size.
I If the problem is twice as large, ideally you’ll have twice as

many subtasks.
Communication and task coordination (C&C) are expensive
I The many parallel architectures can be understood by how

they try to make C&C efficient.
I The many parallel programming paradigms can be

understood by how they support C&C.
I When devising a parallel solution, look for ways to minimize

the costs of C&C.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 4 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Parallel Architectures
There isn’t one, standard, parallel architecture for everything.
We have:
I Multi-core CPUs with a shared-memory programming model.

Used for mobile device application processors, laptops,
desktops, and many large data-base servers.

I Networked clusters, typically running linux. Used for
web-servers and data-mining. Scientific supercomputers are
typically huge clusters with dedicated, high-performance
networks.

I GPUs: hundreds or few thousand simple cores that all
execute the same instruction sequence.

I Domain specific processors
2 video codecs, WiFi interfaces, image and sound

processing, crypto engines, network packet filtering, and
so on.

As a consequence, there isn’t one, standard, parallel
programming paradigm.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 5 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Parallel Performance
The incentive for parallel computing is to do things that wouldn’t be
practical on a single processor.

Performance matters.
We need good models:
I Counting operations can be very misleading – “adding is free.”
I Communication and coordination are often the dominant

costs.
Know Big-O, and measure reality
I Parallel computing makes inefficient algorithms worse

because we care about large N.
I Communication and coordination costs are critical

2 These costs involve the program, its run-time, the
operating system, the network, contention with other
tasks, and other factors.

2 Measure, identify the real issues, and model what
matters.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 6 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Parallel Algorithms

We’ll explore some old friends in a parallel context:
I Sum of the elements of an array
I matrix multiplication
I dynamic programming.

And we’ll explore some uniquely parallel algorithms:

I Bitonic sort
I mutual exclusion
I producer consumer

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 7 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Parallel Programming Paradigms
CPSC 418 will take a multiparadigm approach:

There is no single dominant paradigm for parallel computing.
We’ll focus on two:
I Erlang – message passing, functional programming

2 It’s easy to illustrate many concepts
2 Message passing makes communication explicit, and

communication is usually the critical design issue.
I CUDA: your graphics card is a super-computer

2 It’s a fairly restrictive model, but
2 It works very well for many problems from graphics,

scientific computing, and machine learning.
We’ll mention other paradigms as the course goes on.
I Our goal is to have your prepared so you can quickly pick-up

new parallel programming paradigms – especially those that
don’t exist yet!

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 8 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Course Overview

Blah, blah, blah, . . .

I Every course has an instructor and usually there are TAs, a
textbook, and a syllabus. This course has all that stuff. You
can read all about it on some
slides after the end of the lecture.

I This course has its own, cool stuff:
2 PIKAs – pre/in-class activities
2 Early Bird bonuses
2 Plagiarism policy: please don’t.
2 Bug Bounties

I Mark can’t hear (what?!)

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 9 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

PIKAs – Pre/In-Class Activities

Worth 20% of points missed from HW and the midterm exam.
I If your pre-final grade is 90%, you can raise that at most 2% through

the pikas. Missing one or two isn’t a big deal.
I If your pre-final grade is 70%, you can raise that 6% from the pikas.

This might move your letter grade up a notch (e.g. C+ to B�).
I If your raw grade is 45%, you can raise that 11% from the pikas. So

do the pikas – we hate turning in failing grades.
The first will be posted by Jan. 5 and due before lecture on Jan. 8.
Why pika?

Pica is a serious eating disorder – if you suffer from an
eating disorder, it’s an important medical issue. Get help.
Vancouver Coastal Health has excellent programs.
A pika is a cute (but unfortunately endangered) mammal that
is native to British Columbia.

Photo from http://pixdaus.com/northern-pika-photographer-sandro-animals-pika-yakutia/items/view/281604/.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 10 / 24

http://www.webmd.com/mental-health/mental-health-pica#1
http://www.vch.ca/locations-services/result?res_id=896
http://www.nwf.org/Wildlife/Wildlife-Library/Mammals/American-Pika.aspx
http://pixdaus.com/northern-pika-photographer-sandro-animals-pika-yakutia/items/view/281604/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Early Bird Bonuses

Late policy: Late homework will not be accepted.
Early policy: Early homework gets a 5% bonus.
I Typically, the early-bird deadline is two days before the hard

deadline.
No worms.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 11 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Plagiarism
I have a very simple criterion for plagiarism:
Submitting the work of another person, whether that be another student,
something from a book, or something off the web and representing it as
your own is plagiarism and constitutes academic misconduct.
If the source is clearly cited, then it is not academic misconduct.
If you tell me “This is copied word for word from Jane Foo’s solution” that
is not academic misconduct. It will be graded as one solution for two
people and each will get half credit. I guess that you could try telling me
how much credit each of you should get, but I’ve never had anyone try
this before.
I encourage you to discuss the homework problems with each other.
If you’re brainstorming with some friends and the key idea for a solution
comes up, that’s OK. In this case, add a note to your solution that lists
who you collaborated with.
More details at:
I http://www.ugrad.cs.ubc.ca/˜cs418/plagiarism.html
I http://learningcommons.ubc.ca/guide-to-academic-integrity/

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 12 / 24

http://www.ugrad.cs.ubc.ca/~cs418/plagiarism.html
http://learningcommons.ubc.ca/guide-to-academic-integrity/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Collaboration is good

Talk to your friends.
Talk with your enemies, if this class brings peace between you, all
the better.
Figure things out together, but write your own code, write your
own solutions, and clearly state who you worked with.
We will give full credit if you work out your own solution after
discussing the problem with others.
If you and a friend work out one solution, turn in two copies of it,
and clearly state that you did so,
I This is not academic misconduct. No prosecution.
I Of course, we’ll only give credit for one solution; so, you’ll

each get half.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 13 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Bug Bounties

If I make a mistake when stating a homework problem, then the
first person to report the error gets extra credit.
I If the error would have prevented solving the problem, then

the extra credit is the same as the value of the problem.
I Smaller errors get extra credit in proportion to their severity.

Likewise, bug bounties are awarded (as homework extra credit) for
finding errors in pikas, lecture slides, the course web-pages, code
I provide, etc.
The midterm and final have bug bounties awarded in midterm and
final exam points respectively.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 14 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Mark Can’t Hear (very well)

When working with the whole class, Mark will often move to the
person who’s asking or answering a question so he can hear (and
see) them better.
I Besides, the exercise is good for him.

Devon Graham is a TA who will repeat questions and comments
when Mark doesn’t hear them.
I Thanks, Devon.

Don’t be shy. Mark wants you to ask questions and make remarks.
He’s had the hearing trouble for about 30 years. If Mark doesn’t
hear you, it’s not your fault.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 15 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Learning Objectives (1/2)

Parallel Algorithms
I Familiar with parallel patterns such as reduce, scan, and tiling

and can apply them to common parallel programming
problems.

I Can describe parallel algorithms for matrix operations,
sorting, dynamic programming, and process coordination.

Parallel Architectures
I Can describe shared-memory, message-passing, and SIMD

architectures.
I Can describe a simple cache-coherence protocol.
I Can identify how communication latency and bandwidth are

limited by physical constraints in these architectures.
I Can describe the difference between bandwidth and inverse

latency, and how these impact parallel architectures.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 16 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Learning Objectives (2/2)

Parallel Performance
I Understands the concept of “speed-up”: can calculate it from

simple execution models or measured execution times.
I Can identify key bottlenecks for parallel program performance

including communication latency and bandwidth,
synchronization overhead, and intrinsically sequential code.

Parallel Programming Frameworks
I Can implement simple parallel programs in Erlang and CUDA.
I Can describe the differences between these paradigms.
I Can identify when one of these paradigms is particularly

well-suited (or badly suited) for a particular application.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 17 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Count 3s: a simple example
Given an array (or list) with N items, return the number of those
elements that have the value 3.

In Erlang, we’ll use lists
I [] is the empty list.
I [3] is a list with one-element, where that element has the

value 3.
I [1, 2, 3, 4, 5] is a list of five elements.
I [1 | List2] is the list whose first element has the value 1

and whose tail is the list List2.
We can write functions using pattern matching
count3s([]) -> 0; % The empty list has 0 threes

% A list whose head is 3 has one more 3 than its tail

count3s([3 | Tail]) -> 1 + count3s(Tail);

% A list whose head is not 3 has the same number of 3s as its tail

count3s([Other | Tail]) -> count3s(Tail).

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 18 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Counting Threes – In Parallel

Design:
Use P worker processes.
I Each worker generates a list with N

P elements.
A master process sends a request to each worker asking it to
count the 3s in its piece of the list and send its subtotal back to the
master.
The master adds up the subtotals from each worker and reports
the grand total.
The code is in

http://www.ugrad.cs.ubc.ca/˜cs418/2017-2/lecture/src/course_intro.erl

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 19 / 24

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/lecture/src/course_intro.erl
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

The Results (part 1)
lulu thetis

P Time Speed-up Time Speed-up
1 12.69 1.00 15.40ms 1.00
2 7.97 1.59 9.82ms 1.57
4 6.26 2.03 5.98ms 2.58
8 3.28 3.87 3.11ms 4.95

16 2.93 4.33 2.04ms 7.55
32 2.91 4.36 1.66ms 9.28
64 2.80 4.53 1.62ms 9.51

128 2.78 4.56 2.24ms 6.87
256 2.83 4.84 1.64ms 9.39

Approach:
This slide: Set N, the total number of data values to something “large” (i.e. 106),
sweep P to find optimal value.
Next slide: Use optimal value for P and sweep N to show trends.
Notes: lulu.ugrad.cs.ubc.ca has four, two-way multithreaded cores;
thetis.ugrad.cs.ubc.ca has sixteen, two-way multithreaded cores.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 20 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

The Results (part 2)

TBD
lulu thetis

N Time Speed-up Time Speed-up
1,000 ???ms ??? ???ms ???

10,000 ???ms ??? ???ms ???
100,000 ???ms ??? ???ms ???

1,00,000 ???ms ??? ???ms ???
10,000,000 ???ms ??? ???ms ???

100,000,000 ???ms ??? ???ms ???

Speed-up increases with the problem size.
To utilize more processors (e.g. thetis) we need a bigger problem size to ap-
proach peak speed-up.
Speed-up can be greater than the number of cores!
This is a consequence of “multithreading”.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 21 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Variations
Start with all the data on the “master” process – send each worker
its chunk of the list (or array) in which to count 3s.
I This is a common “newbie” error motivated by a desire to

make the code “look sequential” (i.e. familiar, comfortable,
and safe).

I In practice, this makes the parallel version slower than the
sequential version.

I Sending the data take more time than counting the threes.
I Communication is very often the bottleneck for parallel

computing. See slide 4.
Combine the sub-totals using a tree structure.
I This is a great idea!
I It allows communication to be done in parallel.
I This version achieve near-peak speed-up for smaller problem

sizes than the simple method described on slide 19
I We will explore this approach in more detail starting with the

Jan. 10 lecture.
Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 22 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Preview of the next lecture
January 5: Introduction to Erlang

Read Learn You Some Erlang: “Introduction” through “Functionally Solving
Problems” – You scan skip “Errors and Exceptions” (until next week).
Erlang is functional
Erlang uses message passing
Abstraction of programming patterns using higher-order functions.
There is a pre-class activity
I You need to complete an Erlang template file.
I Must be submitted through handin by 1pm on January 5.

There will be in-class programming activities:
I Bring your laptop or share with someone who brings theirs.

Peaking ahead:
I The Piazza course will be created later today. Expected url: piazza.
I The first PIKA will go out on Jan. 5. Due on Jan. 8 at 1pm.
I Reading for Jan. 8, Learn You Some Erlang: “A short visit to common

data structures” through “More on Multiprocessing”.
I The first homework will go out on Jan. 8. Due on Jan. 17 at 11:59pm

(Early-Bird deadline: Jan. 15 at 11:59pm).
Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 23 / 24

http://learnyousomeerlang.com
http://piazza.com/ubc.ca/winterterm22017/cpsc418
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Review Questions

Name one, or a few, key reasons that parallel programming is
moving into mainstream applications.
What is a pika?
How does the impact of your pika score on your final grade
depend on how you did on the other parts of the class?
What are bug-bounties?
What is the count 3s problem?
How did we measure running times to compute speed up?
I Why did one approach show a speed-up greater than the

number of cores used?
I Why did the other approach show that the parallel version

was slower than the sequential one?

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 24 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Supplementary Material

Course Organization
Getting Started with Erlang
Slide Index

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 25 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Course Organization

Topics: see slide 4
Syllabus
The instructor and TAs
The textbook(s)
Grades
I February 28 Midterm – in class

Plagiarism: see slide 12
Learning Objectives: see slide 16

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 26 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Syllabus

January: Erlang & an intro. to everything
Jan. 3– 8: Course overview, intro. to Erlang programming.
Jan. 10–17: Parallel programming in Erlang, reduce and scan.
Jan. 19–26: Parallel architectures
Jan. 28–Feb. 5: Performance analysis

February: Erlang, Midterm
Feb. 7–16: Sorting
Feb. 19–23: Midterm break.
Feb. 26: Midterm Review
February 28: Midterm

March: CUDA and other topics
Note: We’ll make adjustments to this schedule as we go.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 27 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Administrative Stuff – Who
The instructors
I Mark Greenstreet, mrg@cs.ubc.ca

2 ICCS 323, (604) 822-3065
2 Office hours: Tuesdays, 1pm – 2:30pm, ICCS 323

I Ian Mitchell, mitchell@cs.ubc.ca

2 ICCS 217, (604) 822-2317
2 Office hours: TBA

The TAs
Devon Graham, drgraham@cs.ubc.ca
Kristian Jensen, l2x1b@ugrad.cs.ubc.ca
Sitao Lu, p3l0b@ugrad.cs.ubc.ca
Jocelyn Minns, jminns@cs.ubc.ca
Mason Yang, o7p0b@ugrad.cs.ubc.ca

Course webpage: http://www.ugrad.cs.ubc.ca/˜cs418.
Online discussion group: on piazza.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 28 / 24

mailto:mrg@cs.ubc.ca
mailto:mitchell@cs.ubc.ca
mailto:drgraham@cs.ubc.ca
mailto:l2x1b@ugrad.cs.ubc.ca
mailto:p3l0b@ugrad.cs.ubc.ca
mailto:jminns@cs.ubc.ca
mailto:o7p0b@ugrad.cs.ubc.ca
http://www.ugrad.cs.ubc.ca/~cs418
http://piazza.com/ubc.ca/winterterm22017/cpsc418
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Textbook(s)

For Erlang: Learn You Some Erlang For Great Good, Fred Hébert,
I Free! On-line at http://learnyousomeerlang.com.
I You can buy the dead-tree edition at the same web-site if you like.

For CUDA: Programming Massively Parallel Processors: A
Hands-on Approach (2nd or 3rd ed.), D.B. Kirk and W-M.W. Hwu.
I Please get a copy by late February – I’ll assign readings starting

after the midterm. It’s available at on-line from the UBC library or
your can buy the dead-tree version at amazon.ca or many other
places.

I’ll hand-out copies of some book chapters:
I Principles of Parallel Programming (chap. 5), C. Lin & L. Snyder –

for the reduce and scan algorithms.
I An Introduction to Parallel Programming (chap. 2), P.S. Pacheco –

for a survey of parallel architectures.
I Probably a few journal, magazine, or conference papers.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 29 / 24

http://learnyousomeerlang.com
https://www.amazon.ca/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=dp_ob_title_bk
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Why so many texts?

There isn’t one, dominant parallel architecture or programming
paradigm.
The Lin & Snyder book is a great, paradigm independent
introduction,
But, I’ve found that descriptions of real programming frameworks
lack the details that help you write real code.
So, I’m using several texts, but
I You only have to buy one! ,

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 30 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Grades
Homework (roughly every two weeks): 35%

Midterm exam (February 28 in class): 25%

Final exam (Date, time and location to be determined): 40%

PIKA and bug bounties

PreFinalGrade = 0.35 ⇤ HW + 0.25 ⇤ MidTerm
PikaBonus = 0.20 ⇤ (0.60 � min(0.60,PreFinalGrade)) ⇤ Pika
FinalGrade = 0.40 ⇤ Final

BB = 0.35 ⇤ BBHW + 0.25 ⇤ BBMT + 0.40 ⇤ BBFinal

CourseGrade = min

1.00,

PreFinalGrade + FinalGrade
+PikaBonus + BB

!

To pass the course you must obtain a 50% overall score and pass the
final exam.

The instructors reserve the right to adjust the grading scheme when
necessary to accurately reflect student learning outcomes and/or
departmental expectations.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 31 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Homework

Collaboration policy
I You are welcome and encouraged to discuss the homework

problems with other students in the class, with the TAs and me, and
find relevant material in the text books, other book, on the web, etc.

I You are expected to work out your own solutions and write your
own code. Discussions as described above are to help understand
the material. Your solutions must be your own.

I You must properly cite your collaborators and any outside sources
that you used. You don’t need to cite material from class, the
textbooks, or meeting with the TAs or instructor. See slide 12 for
more on the plagiarism policy.

Late policy
I Each assignment has an “early bird” date before the main date.

Turn in you assignment by the early-bird date to get a 5% bonus.
I No late homework accepted.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 32 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Exams

Midterm, in class, on February 28.
Final exam will be scheduled by the registrar.
Both exams are open book, open notes, open homework and
solutions – open anything printed on paper.
I You can bring a calculator.
I No communication devices: laptops, tablets, cell-phones, etc.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 33 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Erlang Resources

Learn You Some Erlang
http://learnyousomeerlang.com

An on-line book that gives a very good introduction to Erlang. It
has great answers to the “Why is Erlang this way?” kinds of
questions, and it gives realistic assessments of both the strengths
and limitations of Erlang.
Erlang Examples:
http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/lecture/09-08.pdf

My lecture notes that walk through the main features of Erlang
with examples for each. Try it with an Erlang interpreter running in
another window so you can try the examples and make up your
own as you go. This will cover everything you’ll need to make it
through all (or most) of what we’ll do in class, but it doesn’t explain
how to think in Erlang as well as “Learn You Some Erlang” or
Armstrong’s Erlang book (next slide).

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 34 / 24

http://learnyousomeerlang.com
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/lecture/09-08.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

More Erlang Resources
The erlang.org tutorial
http://www.erlang.org/doc/getting_started/users_guide.html

Somewhere between my “Erlang Examples” and “Learn You
Some Erlang.”
Erlang Language Manual
http://www.erlang.org/doc/reference_manual/users_guide.html

My go-to place when looking up details of Erlang operators, etc.
On-line API documentation:
http://www.erlang.org/erldoc.
The book: Programming Erlang: Software for a Concurrent World,
Joe Armstrong, 2007,
http://pragprog.com/book/jaerlang/programming-erlang

Very well written, with lots of great examples. More than you’ll
need for this class, but great if you find yourself using Erlang for a
big project.
More resources listed at http://www.erlang.org/doc.html.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 35 / 24

http://www.erlang.org/doc/getting_started/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.erlang.org/erldoc
http://pragprog.com/book/jaerlang/programming-erlang
http://www.erlang.org/doc.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Getting Erlang

You can run Erlang by giving the command erl on any
departmental machine. For example:
I Linux: bowen, lulu, thetis, lin01, . . . , lin25, . . . ,

all machines above are in the ugrad.cs.ubc.ca domain, e.g.
bowen.ugrad.cs.ubc.ca, etc.
You can install Erlang on your computer
I Erlang solutions provides packages for Windows, OSX, and

the most common linux distros
https://www.erlang-solutions.com/resources/download.html

I Note: some linux distros come with Erlang pre-installed, but it might be an old
version. You should probably install from the link above.

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 36 / 24

https://www.erlang-solutions.com/resources/download.html
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Starting Erlang

Start the Erlang interpreter.
thetis % erl
Erlang/OTP 20 [erts-9.0] [source] ...

Eshell V9.0 (abort with ^G)

1> 2+3.
5
2>

The Erlang interpreter evaluates expressions that you type.
Expressions end with a “.” (period).

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 37 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Index – Main Lecture
Why Parallel Computation Matters
Topics covered
I Topics covered
I Parallel Architectures
I Key Concepts of Parallel Computing
I Parallel Architectures
I Parallel Performance
I Parallel Algorithms
I Parallel Programming Paradigms

Course Overview
I PIKAs – Pre/In-Class Activities
I Early Bird Bonuses
I Plagiarism
I Bug Bounties
I Mark Can’t Hear (very well)
I Learning Objectives

Count 3s: a simple example
Preview & Review

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 38 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

Index – Supplementary Material

Course Organization
I Syllabus
I Administrative Stuff – Who
I Textbook(s)
I Grades
I Homework
I Exams

Erlang Resources
Index

Greenstreet & Mitchell Parallel Computation CpSc 418 – Jan. 3, 2018 39 / 24

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_3
https://en.wikipedia.org/wiki/2018

